Your browser doesn't support javascript.
loading
The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase.
Wongnate, Thanyaporn; Sliwa, Dariusz; Ginovska, Bojana; Smith, Dayle; Wolf, Matthew W; Lehnert, Nicolai; Raugei, Simone; Ragsdale, Stephen W.
Affiliation
  • Wongnate T; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA.
  • Sliwa D; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA.
  • Ginovska B; Physical Sciences Division, Pacific Northwest National Laboratory, Post Office Box 999, K1-83, Richland, WA 99352, USA.
  • Smith D; Physical Sciences Division, Pacific Northwest National Laboratory, Post Office Box 999, K1-83, Richland, WA 99352, USA.
  • Wolf MW; Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA.
  • Lehnert N; Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, USA.
  • Raugei S; Physical Sciences Division, Pacific Northwest National Laboratory, Post Office Box 999, K1-83, Richland, WA 99352, USA.
  • Ragsdale SW; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA. sragsdal@umich.edu.
Science ; 352(6288): 953-8, 2016 May 20.
Article de En | MEDLINE | ID: mdl-27199421
ABSTRACT
Methyl-coenzyme M reductase, the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the biological production of more than 1 billion tons of methane per year. The mechanism of methane synthesis is thought to involve either methyl-nickel(III) or methyl radical/Ni(II)-thiolate intermediates. We employed transient kinetic, spectroscopic, and computational approaches to study the reaction between the active Ni(I) enzyme and substrates. Consistent with the methyl radical-based mechanism, there was no evidence for a methyl-Ni(III) species; furthermore, magnetic circular dichroism spectroscopy identified the Ni(II)-thiolate intermediate. Temperature-dependent transient kinetics also closely matched density functional theory predictions of the methyl radical mechanism. Identifying the key intermediate in methanogenesis provides fundamental insights to develop better catalysts for producing and activating an important fuel and potent greenhouse gas.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Oxidoreductases / Methanobacteriaceae / Biocatalyse / Méthane Langue: En Journal: Science Année: 2016 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Oxidoreductases / Methanobacteriaceae / Biocatalyse / Méthane Langue: En Journal: Science Année: 2016 Type de document: Article Pays d'affiliation: États-Unis d'Amérique