Your browser doesn't support javascript.
loading
Increasing efficiency of preclinical research by group sequential designs.
Neumann, Konrad; Grittner, Ulrike; Piper, Sophie K; Rex, Andre; Florez-Vargas, Oscar; Karystianis, George; Schneider, Alice; Wellwood, Ian; Siegerink, Bob; Ioannidis, John P A; Kimmelman, Jonathan; Dirnagl, Ulrich.
Affiliation
  • Neumann K; Department of Biostatistics and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Grittner U; Department of Biostatistics and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Piper SK; Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Rex A; Department of Biostatistics and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Florez-Vargas O; Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Karystianis G; NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Schneider A; Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Wellwood I; Department of Experimental Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Siegerink B; Bio-health Informatics Group, School of Computer Science, The University of Manchester, Manchester, United Kingdom.
  • Ioannidis JP; Centre for Health Informatics, Macquarie University, Sydney, Australia.
  • Kimmelman J; Department of Biostatistics and Clinical Epidemiology, Charité Universitätsmedizin Berlin, Berlin, Germany.
  • Dirnagl U; Center for Stroke Research, Charité Universitätsmedizin Berlin, Berlin, Germany.
PLoS Biol ; 15(3): e2001307, 2017 03.
Article de En | MEDLINE | ID: mdl-28282371
Despite the potential benefits of sequential designs, studies evaluating treatments or experimental manipulations in preclinical experimental biomedicine almost exclusively use classical block designs. Our aim with this article is to bring the existing methodology of group sequential designs to the attention of researchers in the preclinical field and to clearly illustrate its potential utility. Group sequential designs can offer higher efficiency than traditional methods and are increasingly used in clinical trials. Using simulation of data, we demonstrate that group sequential designs have the potential to improve the efficiency of experimental studies, even when sample sizes are very small, as is currently prevalent in preclinical experimental biomedicine. When simulating data with a large effect size of d = 1 and a sample size of n = 18 per group, sequential frequentist analysis consumes in the long run only around 80% of the planned number of experimental units. In larger trials (n = 36 per group), additional stopping rules for futility lead to the saving of resources of up to 30% compared to block designs. We argue that these savings should be invested to increase sample sizes and hence power, since the currently underpowered experiments in preclinical biomedicine are a major threat to the value and predictiveness in this research domain.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Plan de recherche / Recherche biomédicale Type d'étude: Prognostic_studies Langue: En Journal: PLoS Biol Sujet du journal: BIOLOGIA Année: 2017 Type de document: Article Pays d'affiliation: Allemagne Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Plan de recherche / Recherche biomédicale Type d'étude: Prognostic_studies Langue: En Journal: PLoS Biol Sujet du journal: BIOLOGIA Année: 2017 Type de document: Article Pays d'affiliation: Allemagne Pays de publication: États-Unis d'Amérique