Your browser doesn't support javascript.
loading
Identification of the minimum effective dose for normally distributed data using a Bayesian variable selection approach.
Otava, Martin; Shkedy, Ziv; Hothorn, Ludwig A; Talloen, Willem; Gerhard, Daniel; Kasim, Adetayo.
Affiliation
  • Otava M; a Interuniversity Institute for Biostatistics and Statistical Bioinformatics , Hasselt University , Hasselt , Belgium.
  • Shkedy Z; a Interuniversity Institute for Biostatistics and Statistical Bioinformatics , Hasselt University , Hasselt , Belgium.
  • Hothorn LA; b Institute of Biostatistics , Leibniz University Hannover, Hannover, Germany.
  • Talloen W; c Janssen, Pharmaceutical companies of Johnson & Johnson , Beerse , Belgium.
  • Gerhard D; d School of Mathematics and Statistics , University of Canterbury , Christchurch , New Zealand.
  • Kasim A; e Wolfson Research Institute for Health and Wellbeing , Durham University, Queen's Campus, University Boulevard , Stockton-on-Tees , United Kingdom.
J Biopharm Stat ; 27(6): 1073-1088, 2017.
Article de En | MEDLINE | ID: mdl-28328286
The identification of the minimum effective dose is of high importance in the drug development process. In early stage screening experiments, establishing the minimum effective dose can be translated into a model selection based on information criteria. The presented alternative, Bayesian variable selection approach, allows for selection of the minimum effective dose, while taking into account model uncertainty. The performance of Bayesian variable selection is compared with the generalized order restricted information criterion on two dose-response experiments and through the simulations study. Which method has performed better depends on the complexity of the underlying model and the effect size relative to noise.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Interprétation statistique de données / Théorème de Bayes / Incertitude Type d'étude: Diagnostic_studies / Prognostic_studies Limites: Humans Langue: En Journal: J Biopharm Stat Sujet du journal: FARMACOLOGIA Année: 2017 Type de document: Article Pays d'affiliation: Belgique Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Interprétation statistique de données / Théorème de Bayes / Incertitude Type d'étude: Diagnostic_studies / Prognostic_studies Limites: Humans Langue: En Journal: J Biopharm Stat Sujet du journal: FARMACOLOGIA Année: 2017 Type de document: Article Pays d'affiliation: Belgique Pays de publication: Royaume-Uni