Your browser doesn't support javascript.
loading
Is decay constant?
Pommé, S; Stroh, H; Altzitzoglou, T; Paepen, J; Van Ammel, R; Kossert, K; Nähle, O; Keightley, J D; Ferreira, K M; Verheyen, L; Bruggeman, M.
Affiliation
  • Pommé S; European Commission, Joint Research Centre (JRC), Directorate for Nuclear Safety and Security, Retieseweg 111, B-2440 Geel, Belgium. Electronic address: stefaan.pomme@ec.europa.eu.
  • Stroh H; European Commission, Joint Research Centre (JRC), Directorate for Nuclear Safety and Security, Retieseweg 111, B-2440 Geel, Belgium.
  • Altzitzoglou T; European Commission, Joint Research Centre (JRC), Directorate for Nuclear Safety and Security, Retieseweg 111, B-2440 Geel, Belgium.
  • Paepen J; European Commission, Joint Research Centre (JRC), Directorate for Nuclear Safety and Security, Retieseweg 111, B-2440 Geel, Belgium.
  • Van Ammel R; European Commission, Joint Research Centre (JRC), Directorate for Nuclear Safety and Security, Retieseweg 111, B-2440 Geel, Belgium.
  • Kossert K; Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany.
  • Nähle O; Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany.
  • Keightley JD; National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 OLW, UK.
  • Ferreira KM; National Physical Laboratory (NPL), Hampton Road, Teddington, Middlesex TW11 OLW, UK.
  • Verheyen L; Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium.
  • Bruggeman M; Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium.
Appl Radiat Isot ; 134: 6-12, 2018 Apr.
Article de En | MEDLINE | ID: mdl-28947247
ABSTRACT
Some authors have raised doubt about the invariability of decay constants, which would invalidate the exponential-decay law and the foundation on which the common measurement system for radioactivity is based. Claims were made about a new interaction - the fifth force - by which neutrinos could affect decay constants, thus predicting changes in decay rates in correlation with the variations of the solar neutrino flux. Their argument is based on the observation of permille-sized annual modulations in particular decay rate measurements, as well as transient oscillations at frequencies near 11 year-1 and 12.7 year-1 which they speculatively associate with dynamics of the solar interior. In this work, 12 data sets of precise long-term decay rate measurements have been investigated for the presence of systematic modulations at frequencies between 0.08 and 20 year-1. Besides small annual effects, no common oscillations could be observed among α, ß-, ß+ or EC decaying nuclides. The amplitudes of fitted oscillations to residuals from exponential decay do not exceed 3 times their standard uncertainty, which varies from 0.00023 % to 0.023 %. This contradicts the assertion that 'neutrino-induced' beta decay provides information about the deep solar interior.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Appl Radiat Isot Sujet du journal: MEDICINA NUCLEAR / SAUDE AMBIENTAL Année: 2018 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Appl Radiat Isot Sujet du journal: MEDICINA NUCLEAR / SAUDE AMBIENTAL Année: 2018 Type de document: Article