Your browser doesn't support javascript.
loading
Solute-mediated interactions between active droplets.
Moerman, Pepijn G; Moyses, Henrique W; van der Wee, Ernest B; Grier, David G; van Blaaderen, Alfons; Kegel, Willem K; Groenewold, Jan; Brujic, Jasna.
Affiliation
  • Moerman PG; Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA.
  • Moyses HW; Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands.
  • van der Wee EB; Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA.
  • Grier DG; Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands.
  • van Blaaderen A; Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003, USA.
  • Kegel WK; Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands.
  • Groenewold J; Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands.
  • Brujic J; Debye Institute for Nanomaterials Science, Utrecht University, 3584 Utrecht, The Netherlands.
Phys Rev E ; 96(3-1): 032607, 2017 Sep.
Article de En | MEDLINE | ID: mdl-29346965
ABSTRACT
Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F∼1/r^{2}. Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l=16±3nm, which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Phys Rev E Année: 2017 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Phys Rev E Année: 2017 Type de document: Article Pays d'affiliation: États-Unis d'Amérique