Your browser doesn't support javascript.
loading
Unveiling the atomistic mechanisms for oxygen intercalation in a strongly interacting graphene-metal interface.
Romero-Muñiz, Carlos; Martín-Recio, Ana; Pou, Pablo; Gómez-Rodríguez, José M; Pérez, Rubén.
Affiliation
  • Romero-Muñiz C; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. ruben.perez@uam.es.
  • Martín-Recio A; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. josem.gomez@uam.es.
  • Pou P; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. ruben.perez@uam.es and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
  • Gómez-Rodríguez JM; Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. josem.gomez@uam.es and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid
  • Pérez R; Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. ruben.perez@uam.es and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
Phys Chem Chem Phys ; 20(19): 13370-13378, 2018 May 16.
Article de En | MEDLINE | ID: mdl-29721570
The atomistic mechanisms involved in the oxygen (O) intercalation in the strongly interacting graphene (G) on Rh(111) system are characterized in a comprehensive experimental and theoretical study, combining scanning tunneling microscopy and density functional theory (DFT) calculations. Experimental evidence points out that the G areas located just above the metallic steps of the substrate are the active sites for initializing the intercalation process when some micro-etching points appear after molecular oxygen gas exposure. These regions are responsible for both the dissociation of the oxygen molecules and the subsequent penetration to the G-metal interface. Unlike in other species, the DFT calculations exclude single-point defects as additional entry paths to the interface. After penetration, the intercalation proceeds inwards due to the high mobility of atomic oxygen at the interface following mid-height paths connecting the higher areas of the rippled graphene structure. At larger coverages, the accumulation of O atoms under the high areas increases the G-metal distance in the neighboring low areas, paving the way for the O incorporation and the G detachment that leads to the final O-(2 × 1) structure. Furthermore, our results show that these mechanisms are possible only at temperatures slightly lower than those in which graphene etching takes place.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Phys Chem Chem Phys Sujet du journal: BIOFISICA / QUIMICA Année: 2018 Type de document: Article Pays d'affiliation: Espagne Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Phys Chem Chem Phys Sujet du journal: BIOFISICA / QUIMICA Année: 2018 Type de document: Article Pays d'affiliation: Espagne Pays de publication: Royaume-Uni