Your browser doesn't support javascript.
loading
Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output.
Giandomenico, Stefano L; Mierau, Susanna B; Gibbons, George M; Wenger, Lea M D; Masullo, Laura; Sit, Timothy; Sutcliffe, Magdalena; Boulanger, Jerome; Tripodi, Marco; Derivery, Emmanuel; Paulsen, Ole; Lakatos, András; Lancaster, Madeline A.
Affiliation
  • Giandomenico SL; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
  • Mierau SB; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
  • Gibbons GM; John van Geest Centre for Brain Repair and Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Wenger LMD; John van Geest Centre for Brain Repair and Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Masullo L; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
  • Sit T; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
  • Sutcliffe M; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
  • Boulanger J; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
  • Tripodi M; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
  • Derivery E; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
  • Paulsen O; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
  • Lakatos A; John van Geest Centre for Brain Repair and Division of Stem Cell Neurobiology, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Lancaster MA; Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK.
Nat Neurosci ; 22(4): 669-679, 2019 04.
Article de En | MEDLINE | ID: mdl-30886407
ABSTRACT
Neural organoids have the potential to improve our understanding of human brain development and neurological disorders. However, it remains to be seen whether these tissues can model circuit formation with functional neuronal output. Here we have adapted air-liquid interface culture to cerebral organoids, leading to improved neuronal survival and axon outgrowth. The resulting thick axon tracts display various morphologies, including long-range projection within and away from the organoid, growth-cone turning, and decussation. Single-cell RNA sequencing reveals various cortical neuronal identities, and retrograde tracing demonstrates tract morphologies that match proper molecular identities. These cultures exhibit active neuronal networks, and subcortical projecting tracts can innervate mouse spinal cord explants and evoke contractions of adjacent muscle in a manner dependent on intact organoid-derived innervating tracts. Overall, these results reveal a remarkable self-organization of corticofugal and callosal tracts with a functional output, providing new opportunities to examine relevant aspects of human CNS development and disease.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Organoïdes / Cortex cérébral / Techniques de culture de tissus / Neurones Limites: Female / Humans / Male Langue: En Journal: Nat Neurosci Sujet du journal: NEUROLOGIA Année: 2019 Type de document: Article Pays d'affiliation: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Organoïdes / Cortex cérébral / Techniques de culture de tissus / Neurones Limites: Female / Humans / Male Langue: En Journal: Nat Neurosci Sujet du journal: NEUROLOGIA Année: 2019 Type de document: Article Pays d'affiliation: Royaume-Uni
...