Your browser doesn't support javascript.
loading
Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination.
Rivera, Francisco J; de la Fuente, Alerie G; Zhao, Chao; Silva, Maria E; Gonzalez, Ginez A; Wodnar, Roman; Feichtner, Martina; Lange, Simona; Errea, Oihana; Priglinger, Eleni; O'Sullivan, Anna; Romanelli, Pasquale; Jadasz, Janusz J; Brachtl, Gabriele; Greil, Richard; Tempfer, Herbert; Traweger, Andreas; Bátiz, Luis F; Küry, Patrick; Couillard-Despres, Sebastien; Franklin, Robin J M; Aigner, Ludwig.
Affiliation
  • Rivera FJ; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
  • de la Fuente AG; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.
  • Zhao C; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
  • Silva ME; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
  • Gonzalez GA; Wellcome-MRC Cambridge Stem Cell Institute & Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Wodnar R; Wellcome-MRC Cambridge Stem Cell Institute & Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Feichtner M; Wellcome-MRC Cambridge Stem Cell Institute & Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Lange S; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.
  • Errea O; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.
  • Priglinger E; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
  • O'Sullivan A; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
  • Romanelli P; Wellcome-MRC Cambridge Stem Cell Institute & Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Jadasz JJ; Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile.
  • Brachtl G; Wellcome-MRC Cambridge Stem Cell Institute & Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Greil R; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
  • Tempfer H; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
  • Traweger A; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
  • Bátiz LF; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
  • Küry P; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
  • Couillard-Despres S; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.
  • Franklin RJM; Wellcome-MRC Cambridge Stem Cell Institute & Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
  • Aigner L; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.
Glia ; 67(8): 1510-1525, 2019 08.
Article de En | MEDLINE | ID: mdl-31038798
ABSTRACT
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age. We demonstrate that MSCs derived from aged rats have a reduced capacity to induce oligodendrocyte differentiation of adult CNS stem/progenitor cells. Aging also abolished the ability of MSCs to enhance the generation of myelin-like sheaths in demyelinated cerebellar slice cultures. Finally, in a rat model for CNS demyelination, aging suppressed the capability of systemically transplanted MSCs to boost oligodendrocyte progenitor cell (OPC) differentiation during remyelination. Thus, aging restricts the ability of MSCs to support the generation of oligodendrocytes and consequently inhibits their capacity to enhance the generation of myelin-like sheaths. These findings may impact on the design of therapies using autologous MSCs in older MS patients.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Vieillissement / Oligodendroglie / Cellules souches mésenchymateuses / Remyélinisation Type d'étude: Prognostic_studies Limites: Animals Langue: En Journal: Glia Sujet du journal: NEUROLOGIA Année: 2019 Type de document: Article Pays d'affiliation: Chili

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Vieillissement / Oligodendroglie / Cellules souches mésenchymateuses / Remyélinisation Type d'étude: Prognostic_studies Limites: Animals Langue: En Journal: Glia Sujet du journal: NEUROLOGIA Année: 2019 Type de document: Article Pays d'affiliation: Chili