Your browser doesn't support javascript.
loading
Generation of bioartificial hearts using decellularized scaffolds and mixed cells.
Tong, Cailing; Li, Cheng; Xie, Baiyi; Li, Minghui; Li, Xianguo; Qi, Zhongquan; Xia, Junjie.
Affiliation
  • Tong C; School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China.
  • Li C; Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
  • Xie B; Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
  • Li M; Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
  • Li X; Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
  • Qi Z; Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
  • Xia J; School of Medicine, Guangxi University, Nanning, 530004, Guangxi, China. yxyyz@gxu.edu.cn.
Biomed Eng Online ; 18(1): 71, 2019 Jun 04.
Article de En | MEDLINE | ID: mdl-31164131
ABSTRACT

BACKGROUND:

Patients with end-stage heart failure must receive treatment to recover cardiac function, and the current primary therapy, heart transplantation, is plagued by the limited supply of donor hearts. Bioengineered artificial hearts generated by seeding of cells on decellularized scaffolds have been suggested as an alternative source for transplantation. This study aimed to develop a tissue-engineered heart with lower immunogenicity and functional similarity to a physiological heart that can be used for heart transplantation. MATERIALS AND

METHODS:

We used sodium dodecyl sulfate (SDS) to decellularize cardiac tissue to obtain a decellularized scaffold. Mesenchymal stem cells (MSCs) were isolated from rat bone marrow and identified by flow cytometric labeling of their surface markers. At the same time, the multi-directional differentiation of MSCs was analyzed. The MSCs, endothelial cells, and cardiomyocytes were allowed to adhere to the decellularized scaffold during perfusion, and the function of tissue-engineered heart was analyzed by immunohistochemistry and electrocardiogram.

RESULTS:

MSCs, isolated from rats differentiated into cardiomyocytes, were seeded along with primary rat cardiomyocytes and endothelial cells onto decellularized rat heart scaffolds. We first confirmed the pluripotency of the MSCs, performed immunostaining against cardiac markers expressed by MSC-derived cardiomyocytes, and completed surface antigen profiling of MSC-derived endothelial cells. After cell seeding and culture, we analyzed the performance of the bioartificial heart by electrocardiography but found that the bioartificial heart exhibited abnormal electrical activity. The results indicated that the tissue-engineered heart lacked some cells necessary for the conduction of electrical current, causing deficient conduction function compared to the normal heart.

CONCLUSION:

Our study suggests that MSCs derived from rats may be useful in the generation of a bioartificial heart, although technical challenges remain with regard to generating a fully functional bioartificial heart.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Structures d'échafaudage tissulaires / Bioingénierie / Cellules souches mésenchymateuses / Coeur artificiel Limites: Animals Langue: En Journal: Biomed Eng Online Sujet du journal: ENGENHARIA BIOMEDICA Année: 2019 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Structures d'échafaudage tissulaires / Bioingénierie / Cellules souches mésenchymateuses / Coeur artificiel Limites: Animals Langue: En Journal: Biomed Eng Online Sujet du journal: ENGENHARIA BIOMEDICA Année: 2019 Type de document: Article Pays d'affiliation: Chine