Your browser doesn't support javascript.
loading
Three-Dimensional Printed Models for Lateral Skull Base Surgical Training: Anatomy and Simulation of the Transtemporal Approaches.
Mooney, Michael A; Cavallo, Claudio; Zhou, James J; Bohl, Michael A; Belykh, Evgenii; Gandhi, Sirin; McBryan, Sarah; Stevens, Shawn M; Lawton, Michael T; Almefty, Kaith K; Nakaji, Peter.
Affiliation
  • Mooney MA; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • Cavallo C; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • Zhou JJ; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • Bohl MA; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • Belykh E; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • Gandhi S; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • McBryan S; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • Stevens SM; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • Lawton MT; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • Almefty KK; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
  • Nakaji P; Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
Oper Neurosurg (Hagerstown) ; 18(2): 193-201, 2020 02 01.
Article de En | MEDLINE | ID: mdl-31172189
ABSTRACT

BACKGROUND:

Three-dimensional (3D) printing holds great potential for lateral skull base surgical training; however, studies evaluating the use of 3D-printed models for simulating transtemporal approaches are lacking.

OBJECTIVE:

To develop and evaluate a 3D-printed model that accurately represents the anatomic relationships, surgical corridor, and surgical working angles achieved with increasingly aggressive temporal bone resection in lateral skull base approaches.

METHODS:

Cadaveric temporal bones underwent thin-slice computerized tomography, and key anatomic landmarks were segmented using 3D imaging software. Corresponding 3D-printed temporal bone models were created, and 4 stages of increasingly aggressive transtemporal approaches were performed (40 total approaches). The surgical exposure and working corridor were analyzed quantitatively, and measures of face validity, content validity, and construct validity in a cohort of 14 participants were assessed.

RESULTS:

Stereotactic measurements of the surgical angle of approach to the mid-clivus, residual bone angle, and 3D-scanned infill volume demonstrated comparable changes in both the 3D temporal bone models and cadaveric specimens based on the increasing stages of transtemporal approaches (PANOVA <.003, <.007, and <.007, respectively), indicating accurate representation of the surgical corridor and working angles in the 3D-printed models. Participant assessment revealed high face validity, content validity, and construct validity.

CONCLUSION:

The 3D-printed temporal bone models highlighting key anatomic structures accurately simulated 4 sequential stages of transtemporal approaches with high face validity, content validity, and construct validity. This strategy may provide a useful educational resource for temporal bone anatomy and training in lateral skull base approaches.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Base du crâne / Procédures de neurochirurgie / Impression tridimensionnelle / Internat et résidence / Modèles anatomiques Type d'étude: Prognostic_studies Limites: Humans Langue: En Journal: Oper Neurosurg (Hagerstown) Année: 2020 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Base du crâne / Procédures de neurochirurgie / Impression tridimensionnelle / Internat et résidence / Modèles anatomiques Type d'étude: Prognostic_studies Limites: Humans Langue: En Journal: Oper Neurosurg (Hagerstown) Année: 2020 Type de document: Article