Your browser doesn't support javascript.
loading
Metal-Organic Framework Photoconductivity via Time-Resolved Terahertz Spectroscopy.
Pattengale, Brian; Neu, Jens; Ostresh, Sarah; Hu, Gongfang; Spies, Jacob A; Okabe, Ryotaro; Brudvig, Gary W; Schmuttenmaer, Charles A.
Affiliation
  • Pattengale B; Department of Chemistry and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States.
  • Neu J; Department of Molecular Biophysics and Biochemistry and Yale Microbial Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States.
  • Ostresh S; Department of Chemistry and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States.
  • Hu G; Department of Chemistry and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States.
  • Spies JA; Department of Chemistry and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States.
  • Okabe R; Department of Chemistry and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States.
  • Brudvig GW; Department of Chemistry and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States.
  • Schmuttenmaer CA; Department of Chemistry and Yale Energy Sciences Institute , Yale University , New Haven , Connecticut 06520-8107 , United States.
J Am Chem Soc ; 141(25): 9793-9797, 2019 06 26.
Article de En | MEDLINE | ID: mdl-31179698
While metal-organic frameworks (MOFs) have been under thorough investigation over the past two decades, photoconductive MOFs are an emerging class of materials with promising applications in light harvesting and photocatalysis. To date, there is not a general method to investigate the photoconductivity of polycrystalline MOF samples as-prepared. Herein, we utilize time-resolved terahertz spectroscopy along with a new sample preparation method to determine the photoconductivity of Zn2TTFTB, an archetypical conductive MOF, in a noncontact manner. Using this technique, we were able to gain insight into MOF photoconductivity dynamics with subpicosecond resolution, revealing two distinct carrier lifetimes of 0.6 and 31 ps and a long-lived component of several ns. Additionally, we determined the frequency dependent photoconductivity of Zn2TTFTB which was shown to follow Drude-Smith behavior. Such insights are crucially important with regard to developing the next generation of functional photoconductive MOF materials.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Conductivité électrique / Réseaux organométalliques Langue: En Journal: J Am Chem Soc Année: 2019 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Conductivité électrique / Réseaux organométalliques Langue: En Journal: J Am Chem Soc Année: 2019 Type de document: Article Pays d'affiliation: États-Unis d'Amérique Pays de publication: États-Unis d'Amérique