Modeling the electrical resistivity of polymer composites with segregated structures.
Nat Commun
; 10(1): 2537, 2019 06 10.
Article
de En
| MEDLINE
| ID: mdl-31182709
Hybrid carbon nanotube composites with two different types of fillers have attracted considerable attention for various advantages. The incorporation of micro-scale secondary fillers creates an excluded volume that leads to the increase in the electrical conductivity. By contrast, nano-scale secondary fillers shows a conflicting behavior of the decreased electrical conductivity with micro-scale secondary fillers. Although several attempts have been made in theoretical modeling of secondary-filler composites, the knowledge about how the electrical conductivity depends on the dimension of secondary fillers was not fully understood. This work aims at comprehensive understanding of the size effect of secondary particulate fillers on the electrical conductivity, via the combination of Voronoi geometry induced from Swiss cheese models and the underlying percolation theory. This indicates a transition in the impact of the excluded volume, i.e., the adjustment of the electrical conductivity was measured in cooperation with loading of second fillers with different sizes.
Texte intégral:
1
Collection:
01-internacional
Base de données:
MEDLINE
Langue:
En
Journal:
Nat Commun
Sujet du journal:
BIOLOGIA
/
CIENCIA
Année:
2019
Type de document:
Article
Pays d'affiliation:
Corée du Sud
Pays de publication:
Royaume-Uni