Your browser doesn't support javascript.
loading
Search for dark matter produced in association with bottom or top quarks in s = 13  TeV pp collisions with the ATLAS detector.
Aaboud, M; Aad, G; Abbott, B; Abdinov, O; Abeloos, B; Abidi, S H; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, A A; Afik, Y; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Åkesson, T P A; Akilli, E; Akimov, A V; Alberghi, G L; Albert, J; Albicocco, P; Alconada Verzini, M J; Alderweireldt, S C; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P.
Affiliation
  • Aaboud M; 181Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco.
  • Aad G; 116CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.
  • Abbott B; 145Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK USA.
  • Abdinov O; Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.
  • Abeloos B; 149LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France.
  • Abidi SH; 210Department of Physics, University of Toronto, Toronto, ON Canada.
  • AbouZeid OS; 184Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA USA.
  • Abraham NL; 200Department of Physics and Astronomy, University of Sussex, Brighton, UK.
  • Abramowicz H; 204Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
  • Abreu H; 203Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel.
  • Abreu R; 148Center for High Energy Physics, University of Oregon, Eugene, OR USA.
  • Abulaiti Y; 196Department of Physics, Stockholm University, Stockholm, Sweden.
  • Acharya BS; 197The Oskar Klein Centre, Stockholm, Sweden.
  • Adachi S; 218INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy.
  • Adamczyk L; 219ICTP, Trieste, Italy.
  • Adelman J; 206International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan.
  • Adersberger M; 62Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland.
  • Adye T; 140Department of Physics, Northern Illinois University, DeKalb, IL USA.
  • Affolder AA; 131Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany.
  • Afik Y; 171Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK.
  • Agatonovic-Jovin T; 184Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA USA.
  • Agheorghiesei C; 203Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel.
  • Aguilar-Saavedra JA; 16Institute of Physics, University of Belgrade, Belgrade, Serbia.
  • Ahlen SP; 39Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania.
  • Ahmadov F; 160Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisbon, Portugal.
  • Aielli G; 165Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Granada, Spain.
  • Akatsuka S; 30Department of Physics, Boston University, Boston, MA USA.
  • Akerstedt H; 95Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia.
  • Åkesson TPA; 174INFN Sezione di Roma Tor Vergata, Rome, Italy.
  • Akilli E; 175Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy.
  • Akimov AV; 98Faculty of Science, Kyoto University, Kyoto, Japan.
  • Alberghi GL; 196Department of Physics, Stockholm University, Stockholm, Sweden.
  • Albert J; 197The Oskar Klein Centre, Stockholm, Sweden.
  • Albicocco P; 112Fysiska institutionen, Lunds universitet, Lund, Sweden.
  • Alconada Verzini MJ; 74Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland.
  • Alderweireldt SC; 127P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia.
  • Aleksa M; 27INFN Sezione di Bologna, Bologna, Italy.
  • Aleksandrov IN; 28Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy.
  • Alexa C; 225Department of Physics and Astronomy, University of Victoria, Victoria, BC Canada.
  • Alexander G; 72INFN e Laboratori Nazionali di Frascati, Frascati, Italy.
  • Alexopoulos T; 101Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina.
  • Alhroob M; 138Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands.
  • Ali B; 46CERN, Geneva, Switzerland.
  • Aliev M; 95Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia.
  • Alimonti G; 38Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania.
  • Alison J; 204Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
  • Alkire SP; 12Physics Department, National Technical University of Athens, Zografou, Greece.
  • Allbrooke BMM; 145Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK USA.
  • Allen BW; 168Czech Technical University in Prague, Prague, Czech Republic.
  • Allport PP; 103INFN Sezione di Lecce, Lecce, Italy.
Eur Phys J C Part Fields ; 78(1): 18, 2018.
Article de En | MEDLINE | ID: mdl-31265005
ABSTRACT
A search for weakly interacting massive dark-matter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1 fb - 1 of proton-proton collision data recorded by the ATLAS experiment at s = 13  TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV , mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Eur Phys J C Part Fields Année: 2018 Type de document: Article Pays d'affiliation: Maroc

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Eur Phys J C Part Fields Année: 2018 Type de document: Article Pays d'affiliation: Maroc