Your browser doesn't support javascript.
loading
Dissociation between Postrhinal Cortex and Downstream Parahippocampal Regions in the Representation of Egocentric Boundaries.
Gofman, Xenia; Tocker, Gilad; Weiss, Shahaf; Boccara, Charlotte N; Lu, Li; Moser, May-Britt; Moser, Edvard I; Morris, Genela; Derdikman, Dori.
Affiliation
  • Gofman X; Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
  • Tocker G; Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 52900, Israel.
  • Weiss S; Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel; Department of Zoology, Tel Aviv University, Tel Aviv 69978, Israel.
  • Boccara CN; Institute of Basic Medical Sciences, University of Oslo, Oslo 0372, Norway.
  • Lu L; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7030, Norway.
  • Moser MB; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7030, Norway.
  • Moser EI; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim 7030, Norway.
  • Morris G; Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel.
  • Derdikman D; Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa 31096, Israel. Electronic address: derdik@technion.ac.il.
Curr Biol ; 29(16): 2751-2757.e4, 2019 08 19.
Article de En | MEDLINE | ID: mdl-31378610
ABSTRACT
Navigation requires the integration of many sensory inputs to form a multi-modal cognitive map of the environment, which is believed to be implemented in the hippocampal region by spatially tuned cells [1-10]. These cells encode various aspects of the environment in a world-based (allocentric) reference frame. Although the cognitive map is represented in allocentric coordinates, the environment is sensed through diverse sensory organs, mostly situated in the animal's head, and therefore represented in sensory and parietal cortices in head-centered egocentric coordinates. Yet it is not clear how and where the brain transforms these head-centered egocentric representations to map-like allocentric representations computed in the hippocampal region. Theoretical modeling has predicted a role for both egocentric and head direction (HD) information in performing an egocentric-allocentric transformation [11-15]. Here, we recorded new data and also used data from a previous study [16]. Adapting a generalized linear model (GLM) classification [17]; we show that the postrhinal cortex (POR) contains a population of pure egocentric boundary cells (EBCs), in contrast with the conjunctive EBCs × HD cells, which we found downstream mostly in the parasubiculum (PaS) and in the medial entorhinal cortex (MEC). Our finding corroborates the idea of a brain network performing an egocentric to allocentric transformation by HD cells. This is a fundamental building block in the formation of the brain's internal cognitive map.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Rats / Cortex entorhinal / Gyrus parahippocampique Type d'étude: Prognostic_studies Limites: Animals Langue: En Journal: Curr Biol Sujet du journal: BIOLOGIA Année: 2019 Type de document: Article Pays d'affiliation: Israël

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Rats / Cortex entorhinal / Gyrus parahippocampique Type d'étude: Prognostic_studies Limites: Animals Langue: En Journal: Curr Biol Sujet du journal: BIOLOGIA Année: 2019 Type de document: Article Pays d'affiliation: Israël
...