Your browser doesn't support javascript.
loading
Soft windowing application to improve analysis of high-throughput phenotyping data.
Haselimashhadi, Hamed; Mason, Jeremy C; Munoz-Fuentes, Violeta; López-Gómez, Federico; Babalola, Kolawole; Acar, Elif F; Kumar, Vivek; White, Jacqui; Flenniken, Ann M; King, Ruairidh; Straiton, Ewan; Seavitt, John Richard; Gaspero, Angelina; Garza, Arturo; Christianson, Audrey E; Hsu, Chih-Wei; Reynolds, Corey L; Lanza, Denise G; Lorenzo, Isabel; Green, Jennie R; Gallegos, Juan J; Bohat, Ritu; Samaco, Rodney C; Veeraragavan, Surabi; Kim, Jong Kyoung; Miller, Gregor; Fuchs, Helmult; Garrett, Lillian; Becker, Lore; Kang, Yeon Kyung; Clary, David; Cho, Soo Young; Tamura, Masaru; Tanaka, Nobuhiko; Soo, Kyung Dong; Bezginov, Alexandr; About, Ghina Bou; Champy, Marie-France; Vasseur, Laurent; Leblanc, Sophie; Meziane, Hamid; Selloum, Mohammed; Reilly, Patrick T; Spielmann, Nadine; Maier, Holger; Gailus-Durner, Valerie; Sorg, Tania; Hiroshi, Masuya; Yuichi, Obata; Heaney, Jason D.
Affiliation
  • Haselimashhadi H; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
  • Mason JC; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
  • Munoz-Fuentes V; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
  • López-Gómez F; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
  • Babalola K; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
  • Acar EF; The Centre for Phenogenomics.
  • Kumar V; The Hospital for Sick Children, Toronto, Canada.
  • White J; Department of Statistics, University of Manitoba, Winnipeg, MB R3T 2N2 Canada.
  • Flenniken AM; The Jackson Laboratory, Bar Harbor, ME 04609, USA.
  • King R; The Jackson Laboratory, Bar Harbor, ME 04609, USA.
  • Straiton E; The Centre for Phenogenomics.
  • Seavitt JR; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.
  • Gaspero A; MRC Harwell Institute, Harwell OX11 0RD, UK.
  • Garza A; MRC Harwell Institute, Harwell OX11 0RD, UK.
  • Christianson AE; Baylor College of Medicine, Houston, TX, USA.
  • Hsu CW; Baylor College of Medicine, Houston, TX, USA.
  • Reynolds CL; Baylor College of Medicine, Houston, TX, USA.
  • Lanza DG; Baylor College of Medicine, Houston, TX, USA.
  • Lorenzo I; Baylor College of Medicine, Houston, TX, USA.
  • Green JR; Baylor College of Medicine, Houston, TX, USA.
  • Gallegos JJ; Baylor College of Medicine, Houston, TX, USA.
  • Bohat R; Baylor College of Medicine, Houston, TX, USA.
  • Samaco RC; Baylor College of Medicine, Houston, TX, USA.
  • Veeraragavan S; Baylor College of Medicine, Houston, TX, USA.
  • Kim JK; Baylor College of Medicine, Houston, TX, USA.
  • Miller G; Baylor College of Medicine, Houston, TX, USA.
  • Fuchs H; Baylor College of Medicine, Houston, TX, USA.
  • Garrett L; Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, Korea.
  • Becker L; Helmholtz Center Munich, Neuherberg, Germany.
  • Kang YK; Helmholtz Center Munich, Neuherberg, Germany.
  • Clary D; Helmholtz Center Munich, Neuherberg, Germany.
  • Cho SY; Helmholtz Center Munich, Neuherberg, Germany.
  • Tamura M; Korea Mouse Phenotyping Center (KMPC), Korea.
  • Tanaka N; Mouse Biology Program, University of California Davis, Davis, CA, USA.
  • Soo KD; National Cancer Center (NCC) & Korea Mouse Phenotyping Center (KMPC), Korea.
  • Bezginov A; RIKEN BioResource Research Center, Tsukuba, Japan.
  • About GB; RIKEN BioResource Research Center, Tsukuba, Japan.
  • Champy MF; Seoul National University & Korea Mouse Phenotyping Center (KMPC), Korea.
  • Vasseur L; The Centre for Phenogenomics.
  • Leblanc S; The Hospital for Sick Children, Toronto, Canada.
  • Meziane H; Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, PHENOMIN-ICS, 67404 Illkirch, France.
  • Selloum M; Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, PHENOMIN-ICS, 67404 Illkirch, France.
  • Reilly PT; Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, PHENOMIN-ICS, 67404 Illkirch, France.
  • Spielmann N; Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, PHENOMIN-ICS, 67404 Illkirch, France.
  • Maier H; Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, PHENOMIN-ICS, 67404 Illkirch, France.
  • Gailus-Durner V; Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, PHENOMIN-ICS, 67404 Illkirch, France.
  • Sorg T; Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, PHENOMIN-ICS, 67404 Illkirch, France.
  • Hiroshi M; Helmholtz Center Munich, Neuherberg, Germany.
  • Yuichi O; Helmholtz Center Munich, Neuherberg, Germany.
  • Heaney JD; Helmholtz Center Munich, Neuherberg, Germany.
Bioinformatics ; 36(5): 1492-1500, 2020 03 01.
Article de En | MEDLINE | ID: mdl-31591642
ABSTRACT
MOTIVATION High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors.

RESULTS:

Here we introduce 'soft windowing', a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype-phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION The method is freely available in the R package SmoothWin, available on CRAN http//CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Logiciel / Santé de la population Type d'étude: Prognostic_studies Limites: Animals / Humans Langue: En Journal: Bioinformatics Sujet du journal: INFORMATICA MEDICA Année: 2020 Type de document: Article Pays d'affiliation: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Logiciel / Santé de la population Type d'étude: Prognostic_studies Limites: Animals / Humans Langue: En Journal: Bioinformatics Sujet du journal: INFORMATICA MEDICA Année: 2020 Type de document: Article Pays d'affiliation: Royaume-Uni