Your browser doesn't support javascript.
loading
The Diiron Monooxygenase CmlA from Chloramphenicol Biosynthesis Allows Reconstitution of ß-Hydroxylation during Glycopeptide Antibiotic Biosynthesis.
Kaniusaite, Milda; Goode, Robert J A; Schittenhelm, Ralf B; Makris, Thomas M; Cryle, Max J.
Affiliation
  • Kaniusaite M; The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia.
  • Goode RJA; EMBL Australia , Monash University , Clayton , Victoria 3800 , Australia.
  • Schittenhelm RB; The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia.
  • Makris TM; Monash Biomedical Proteomics Facility , Monash University , Clayton , Victoria 3800 , Australia.
  • Cryle MJ; The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology , Monash University , Clayton , Victoria 3800 , Australia.
ACS Chem Biol ; 14(12): 2932-2941, 2019 12 20.
Article de En | MEDLINE | ID: mdl-31774267
ABSTRACT
ß-Hydroxylation plays an important role in the nonribosomal peptide biosynthesis of many important natural products, including bleomycin, chloramphenicol, and the glycopeptide antibiotics (GPAs). Various oxidative enzymes have been implicated in such a process, with the mechanism of incorporation varying from installation of hydroxyl groups in amino acid precursors prior to adenylation to direct amino acid oxidation during peptide assembly. In this work, we demonstrate the in vitro utility and scope of the unusual nonheme diiron monooxygenase CmlA from chloramphenicol biosynthesis for the ß-hydroxylation of a diverse range of carrier protein bound substrates by adapting this enzyme as a non-native trans-acting enzyme within NRPS-mediated GPA biosynthesis. The results from our study show that CmlA has a broad substrate specificity for modified phenylalanine/tyrosine residues as substrates and can be used in a practical strategy to functionally cross complement compatible NRPS biosynthesis pathways in vitro.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Glycopeptides / Chloramphénicol / Mixed function oxygenases / Fer / Antibactériens Langue: En Journal: ACS Chem Biol Année: 2019 Type de document: Article Pays d'affiliation: Australie

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Glycopeptides / Chloramphénicol / Mixed function oxygenases / Fer / Antibactériens Langue: En Journal: ACS Chem Biol Année: 2019 Type de document: Article Pays d'affiliation: Australie