Your browser doesn't support javascript.
loading
Tissue Specific Reference Genes for MicroRNA Expression Analysis in a Mouse Model of Peripheral Nerve Injury.
Kalpachidou, Theodora; Kummer, Kai K; Mitric, Miodrag; Kress, Michaela.
Affiliation
  • Kalpachidou T; Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria.
  • Kummer KK; Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria.
  • Mitric M; Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria.
  • Kress M; Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria.
Front Mol Neurosci ; 12: 283, 2019.
Article de En | MEDLINE | ID: mdl-31824261
ABSTRACT
MicroRNAs (miRNAs) have emerged as master switch regulators in many biological processes in health and disease, including neuropathy. miRNAs are commonly quantified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), usually estimated as relative expression through reference genes normalization. Different non-coding RNAs (ncRNAs) are used for miRNA normalization; however, there is no study identifying the optimal reference genes in animal models for peripheral nerve injury. We evaluated the stability of eleven ncRNAs, commonly used for miRNA normalization, in dorsal root ganglia (DRG), dorsal horn of the spinal cord (dhSC), and medial prefrontal cortex (mPFC) in the mouse spared nerve injury (SNI) model. After RT-qPCR, the stability of each ncRNA was determined by using four different

methods:

BestKeeper, the comparative delta-Cq method, geNorm, and NormFinder. The candidates were rated according to their performance in each method and an overall ranking list was compiled. The most stable ncRNAs were sno420, sno429, and sno202 in DRG; sno429, sno202, and U6 in dhSC; sno202, sno420, and sno142 in mPFC. We provide the first reference genes' evaluation for miRNA normalization in different neuronal tissues in an animal model of peripheral nerve injury. Our results underline the need for careful selection of reference genes for miRNA normalization in different tissues and experimental conditions. We further anticipate that our findings can be used in a broad range of nerve injury related studies, to ensure validity and promote reproducibility in miRNA quantification.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies Langue: En Journal: Front Mol Neurosci Année: 2019 Type de document: Article Pays d'affiliation: Autriche

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies Langue: En Journal: Front Mol Neurosci Année: 2019 Type de document: Article Pays d'affiliation: Autriche
...