Your browser doesn't support javascript.
loading
Magnetic vortex nucleation and annihilation in bi-stable ultra-small ferromagnetic particles.
Martínez-Pérez, M J; Müller, B; Lin, J; Rodriguez, L A; Snoeck, E; Kleiner, R; Sesé, J; Koelle, D.
Affiliation
  • Martínez-Pérez MJ; Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain. pemar@unizar.es and Fundación ARAID, Avda. de Ranillas, 50018 Zaragoza, Spain.
  • Müller B; Physikalisches Institut - Experimentalphysik II and Center for Quantum Science (CQ) in LISA+, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany.
  • Lin J; Physikalisches Institut - Experimentalphysik II and Center for Quantum Science (CQ) in LISA+, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany.
  • Rodriguez LA; Departamento de Física, Universidad del Valle, A.A. 25360, Cali, Colombia and Center of Excellence on Novel Materials - CENM, Universidad del Valle, A.A. 25360, Cali, Colombia.
  • Snoeck E; CEMES-CNRS 29, rue Jeanne Marvig, B.P. 94347, F-31055 Toulouse Cedex, France.
  • Kleiner R; Physikalisches Institut - Experimentalphysik II and Center for Quantum Science (CQ) in LISA+, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany.
  • Sesé J; Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain. pemar@unizar.es and Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, S
  • Koelle D; Physikalisches Institut - Experimentalphysik II and Center for Quantum Science (CQ) in LISA+, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany.
Nanoscale ; 12(4): 2587-2595, 2020 Jan 28.
Article de En | MEDLINE | ID: mdl-31939948
ABSTRACT
Vortex-mediated magnetization reversal in individual ultra-small (∼100 nm) ferromagnetic particles at low temperatures is studied by nanoSQUID magnetometry. At zero applied bias field, the flux-closure magnetic state (vortex) and the quasi uniform configuration are bi-stable. This stems from the extremely small size of the nanoparticles that lies very close to the limit of single-domain formation. The analysis of the temperature-dependent (from 0.3 to 70 K) hysteresis of the magnetization allows us to infer the nature of the ground state magnetization configuration. The latter corresponds to a vortex state as also confirmed by electron holography experiments. Based on the simultaneous analysis of the vortex nucleation and annihilation data, we estimate the magnitude of the energy barriers separating the quasi single-domain and the vortex state and their field dependence. For this purpose, we use a modified power-law scaling of the energy barriers as a function of the applied bias field. These studies are essential to test the thermal and temporal stability of flux-closure states stabilized in ultra-small ferromagnets.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nanoscale Année: 2020 Type de document: Article Pays d'affiliation: Espagne

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nanoscale Année: 2020 Type de document: Article Pays d'affiliation: Espagne