Multimodal Stimulation in a Microfluidic Device Facilitates Studies of Interneurons in Sensory Integration in C. elegans.
Small
; 16(10): e1905852, 2020 03.
Article
de En
| MEDLINE
| ID: mdl-32003130
Animals' perception and behavior involve integration of multiple sensory modalities. Caenorhabditis elegans is a useful model for studying multimodal sensory integration, as it has well-characterized neuronal circuits in a relatively simple nervous system. However, most studies based on functional imaging have only been conducted on single modal stimuli, because well-controlled multimodal experiments for C. elegans are technically difficult. For instance, no single systems currently deliver precise stimuli with spatial, temporal, and intensity control, despite prior hypotheses that interneurons do integrate these sensory inputs to control behavior. Here, a microfluidic platform that can easily deliver spatially and temporally controlled combination stimuli to C. elegans is presented. With this platform, both sensory and interneuron activity is measured in response to mechanical and chemical stimulations in a quantitative and high-throughput manner. It is found that the activity of command interneuron PVC can be modulated by prior stimulation both within the same and across different modalities. The roles of monoaminergic and peptidergic signaling are further examined on the process of multimodal integration through PVC activity. The approach exemplified here is envisioned to be broadly applicable in different contexts to elucidate underlying mechanisms and identify genes affecting multisensory integration.
Mots clés
Texte intégral:
1
Collection:
01-internacional
Base de données:
MEDLINE
Sujet principal:
Caenorhabditis elegans
/
Microfluidique
/
Interneurones
Limites:
Animals
Langue:
En
Journal:
Small
Sujet du journal:
ENGENHARIA BIOMEDICA
Année:
2020
Type de document:
Article
Pays d'affiliation:
États-Unis d'Amérique
Pays de publication:
Allemagne