Your browser doesn't support javascript.
loading
ASCL1- and DLX2-induced GABAergic neurons from hiPSC-derived NPCs.
Barretto, Natalie; Zhang, Hanwen; Powell, Samuel K; Fernando, Michael B; Zhang, Siwei; Flaherty, Erin K; Ho, Seok-Man; Slesinger, Paul A; Duan, Jubao; Brennand, Kristen J.
Affiliation
  • Barretto N; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Zhang H; Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
  • Powell SK; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Fernando MB; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Zhang S; Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
  • Flaherty EK; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Ho SM; Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Slesinger PA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Duan J; Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA. Electronic address: jduan@uchicago.edu.
  • Brennand KJ; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; De
J Neurosci Methods ; 334: 108548, 2020 Feb 14.
Article de En | MEDLINE | ID: mdl-32065989
ABSTRACT

BACKGROUND:

Somatic cell reprogramming is routinely used to generate donor-specific human induced pluripotent stem cells (hiPSCs) to facilitate studies of disease in a human context. The directed differentiation of hiPSCs can generate large quantities of patient-derived cells; however, such methodologies frequently yield heterogeneous populations of neurons and glia that require extended timelines to achieve electrophysiological maturity. More recently, transcription factor-based induction protocols have been show to rapidly generate defined neuronal populations from hiPSCs. NEW

METHOD:

In a manner similar to our previous adaption of NGN2-glutamatergic neuronal induction from hiPSC-derived neural progenitor cells (NPCs), we now adapt an established protocol of lentiviral overexpression of ASCL1 and DLX2 to hiPSC-NPCs.

RESULTS:

We demonstrate induction of a robust and highly pure population of functional GABAergic neurons (iGANs). Importantly, we successfully applied this technique to hiPSC-NPCs derived from ten donors across two independent laboratories, finding it to be an efficient and highly reproducible approach to generate induced GABAergic neurons. Our results show that, like hiPSC-iGANs, NPC-iGANs exhibit increased GABAergic marker expression, electrophysiological maturity, and have distinct transcriptional profiles that distinguish them from other cell-types of the brain. Nonetheless, until donor-matched hiPSCs-iGANs and NPC-iGANs are directly compared, we cannot rule out the possibility that subtle differences in patterning or maturity may exist between these populations; one should always control for cell source in all iGAN experiments.

CONCLUSIONS:

This methodology, relying upon an easily cultured starting population of hiPSC-NPCs, makes possible the generation of large-scale defined co-cultures of induced glutamatergic and GABAergic neurons for hiPSC-based disease models and precision drug screening.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies Langue: En Journal: J Neurosci Methods Année: 2020 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies Langue: En Journal: J Neurosci Methods Année: 2020 Type de document: Article Pays d'affiliation: États-Unis d'Amérique