Your browser doesn't support javascript.
loading
Management of Delayed Fluorophor-Sensitized Exciton Harvesting for Stable and Efficient All-Fluorescent White Organic Light-Emitting Diodes.
Xie, Feng-Ming; Zou, Shi-Jie; Li, Yanqing; Lu, Lin-Yang; Yang, Rui; Zeng, Xin-Yi; Zhang, Guang-Hui; Chen, Jingde; Tang, Jian-Xin.
Affiliation
  • Xie FM; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China.
  • Zou SJ; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China.
  • Li Y; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China.
  • Lu LY; School of Physics and Electronics Science, Nanophotonics & Advanced Instrument Engineering Research Center, Ministry of Education, East China Normal University, Shanghai 200062, China.
  • Yang R; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China.
  • Zeng XY; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China.
  • Zhang GH; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China.
  • Chen J; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China.
  • Tang JX; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China.
ACS Appl Mater Interfaces ; 12(14): 16736-16742, 2020 Apr 08.
Article de En | MEDLINE | ID: mdl-32193927
ABSTRACT
White organic light-emitting diodes (WOLEDs) using thermally activated delayed fluorescence (TADF)-based single emissive layer (SEL) have attracted enormous attention because of their simple device structure and full exciton utilization potential for high efficiency. However, WOLEDs made of an all-TADF SEL usually exhibit serious efficiency roll-off and poor color stability due to serious exciton-annihilation and unbalanced radiative decays of different TADF emitters. Herein, a new strategy is proposed to manipulate the TADF-sensitized fluorescence process by combining dual-host systems of high triplet energy with a conventional fluorescent emitter of complementary color. The multiple energy-funneling paths are modulated and short-range Dexter energy transfer is largely suppressed due to the steric effect of peripheral tert-butyl group in the blue TADF sensitizer. The resulting all-fluorescent WOLEDs achieve an unprecedentedly high external quantum efficiency of 21.8% with balanced white emission of Commission Internationale de l'Eclairage coordinate of (0.292, 0.343), accompanied with good color stability, reduced efficiency roll-off, and prolonged operational lifetime. These findings demonstrate the validity of this strategy for precisely allocating the exciton harvesting in SEL WOLEDs.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2020 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2020 Type de document: Article Pays d'affiliation: Chine