Your browser doesn't support javascript.
loading
Comparative Transcriptomics Reveals Distinct Gene Expressions of a Model Ciliated Protozoa Feeding on Bacteria-Free Medium, Digestible, and Digestion-Resistant Bacteria.
Zou, Songbao; Zhang, Qianqian; Gong, Jun.
Affiliation
  • Zou S; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
  • Zhang Q; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
  • Gong J; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingda 266071, China.
Microorganisms ; 8(4)2020 Apr 13.
Article de En | MEDLINE | ID: mdl-32295093
ABSTRACT
Bacterivory is an important ecological function of protists in natural ecosystems. However, there are diverse bacterial species resistant to protistan digestion, which reduces the carbon flow to higher trophic levels. So far, a molecular biological view of metabolic processes in heterotrophic protists during predation of bacterial preys of different digestibility is still lacking. In this study, we investigated the growth performance a ciliated protozoan Tetrahymena thermophila cultivated in a bacteria-free Super Proteose Peptone (SPP) medium (control), and in the media mixed with either a digestion-resistant bacterial species (DRB) or a digestible strain of E. coli (ECO). We found the protist population grew fastest in the SPP and slowest in the DRB treatment. Fluorescence in situ hybridization confirmed that there were indeed non-digested, viable bacteria in the ciliate cells fed with DRB, but none in other treatments. Comparative analysis of RNA-seq data showed that, relative to the control, 637 and 511 genes in T. thermophila were significantly and differentially expressed in the DRB and ECO treatments, respectively. The protistan expression of lysosomal proteases (especially papain-like cysteine proteinases), GH18 chitinases, and an isocitrate lyase were upregulated in both bacterial treatments. The genes encoding protease, glycosidase and involving glycolysis, TCA and glyoxylate cycles of carbon metabolic processes were higher expressed in the DRB treatment when compared with the ECO. Nevertheless, the genes for glutathione metabolism were more upregulated in the control than those in both bacterial treatments, regardless of the digestibility of the bacteria. The results of this study indicate that not only bacterial food but also digestibility of bacterial taxa modulate multiple metabolic processes in heterotrophic protists, which contribute to a better understanding of protistan bacterivory and bacteria-protists interactions on a molecular basis.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Microorganisms Année: 2020 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Microorganisms Année: 2020 Type de document: Article Pays d'affiliation: Chine