Your browser doesn't support javascript.
loading
NWChem: Past, present, and future.
Aprà, E; Bylaska, E J; de Jong, W A; Govind, N; Kowalski, K; Straatsma, T P; Valiev, M; van Dam, H J J; Alexeev, Y; Anchell, J; Anisimov, V; Aquino, F W; Atta-Fynn, R; Autschbach, J; Bauman, N P; Becca, J C; Bernholdt, D E; Bhaskaran-Nair, K; Bogatko, S; Borowski, P; Boschen, J; Brabec, J; Bruner, A; Cauët, E; Chen, Y; Chuev, G N; Cramer, C J; Daily, J; Deegan, M J O; Dunning, T H; Dupuis, M; Dyall, K G; Fann, G I; Fischer, S A; Fonari, A; Früchtl, H; Gagliardi, L; Garza, J; Gawande, N; Ghosh, S; Glaesemann, K; Götz, A W; Hammond, J; Helms, V; Hermes, E D; Hirao, K; Hirata, S; Jacquelin, M; Jensen, L; Johnson, B G.
Affiliation
  • Aprà E; Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
  • Bylaska EJ; Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
  • de Jong WA; Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Govind N; Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
  • Kowalski K; Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
  • Straatsma TP; National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Valiev M; Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
  • van Dam HJJ; Brookhaven National Laboratory, Upton, New York 11973, USA.
  • Alexeev Y; Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Anchell J; Intel Corporation, Santa Clara, California 95054, USA.
  • Anisimov V; Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, USA.
  • Aquino FW; QSimulate, Cambridge, Massachusetts 02139, USA.
  • Atta-Fynn R; Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019, USA.
  • Autschbach J; Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.
  • Bauman NP; Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
  • Becca JC; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  • Bernholdt DE; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Bhaskaran-Nair K; Washington University, St. Louis, Missouri 63130, USA.
  • Bogatko S; 4G Clinical, Wellesley, Massachusetts 02481, USA.
  • Borowski P; Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland.
  • Boschen J; Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
  • Brabec J; J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 18223 Prague 8, Czech Republic.
  • Bruner A; Department of Chemistry and Physics, University of Tennessee at Martin, Martin, Tennessee 38238, USA.
  • Cauët E; Service de Chimie Quantique et Photophysique (CP 160/09), Université libre de Bruxelles, B-1050 Brussels, Belgium.
  • Chen Y; Facebook, Menlo Park, California 94025, USA.
  • Chuev GN; Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.
  • Cramer CJ; Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.
  • Daily J; Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
  • Deegan MJO; SKAO, Jodrell Bank Observatory, Macclesfield SK11 9DL, United Kingdom.
  • Dunning TH; Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
  • Dupuis M; Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.
  • Dyall KG; Dirac Solutions, Portland, Oregon 97229, USA.
  • Fann GI; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
  • Fischer SA; Chemistry Division, U. S. Naval Research Laboratory, Washington, DC 20375, USA.
  • Fonari A; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
  • Früchtl H; EaStCHEM and School of Chemistry, University of St. Andrews, St. Andrews KY16 9ST, United Kingdom.
  • Gagliardi L; Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA.
  • Garza J; Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, Col. Vicentina, Iztapalapa, C.P. 09340 Ciudad de México, Mexico.
  • Gawande N; Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
  • Ghosh S; Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 5545, USA.
  • Glaesemann K; Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
  • Götz AW; San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, USA.
  • Hammond J; Intel Corporation, Santa Clara, California 95054, USA.
  • Helms V; Center for Bioinformatics, Saarland University, D-66041 Saarbrücken, Germany.
  • Hermes ED; Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, USA.
  • Hirao K; Next-generation Molecular Theory Unit, Advanced Science Institute, RIKEN, Saitama 351-0198, Japan.
  • Hirata S; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Jacquelin M; Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
  • Jensen L; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
  • Johnson BG; Acrobatiq, Pittsburgh, Pennsylvania 15206, USA.
J Chem Phys ; 152(18): 184102, 2020 May 14.
Article de En | MEDLINE | ID: mdl-32414274
ABSTRACT
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Chem Phys Année: 2020 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Chem Phys Année: 2020 Type de document: Article Pays d'affiliation: États-Unis d'Amérique
...