Your browser doesn't support javascript.
loading
CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification.
Collazos-Huertas, D F; Álvarez-Meza, A M; Acosta-Medina, C D; Castaño-Duque, G A; Castellanos-Dominguez, G.
Affiliation
  • Collazos-Huertas DF; Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales, Colombia. dfcollazosh@unal.edu.co.
  • Álvarez-Meza AM; Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales, Colombia.
  • Acosta-Medina CD; Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales, Colombia.
  • Castaño-Duque GA; Cultura de la Calidad en la Educación Research Group, Universidad Nacional de Colombia, Manizales, Colombia.
  • Castellanos-Dominguez G; Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales, Colombia.
Brain Inform ; 7(1): 8, 2020 Sep 03.
Article de En | MEDLINE | ID: mdl-32880784
ABSTRACT
Interpretation of brain activity responses using motor imagery (MI) paradigms is vital for medical diagnosis and monitoring. Assessed by machine learning techniques, identification of imagined actions is hindered by substantial intra- and inter-subject variability. Here, we develop an architecture of Convolutional Neural Networks (CNN) with an enhanced interpretation of the spatial brain neural patterns that mainly contribute to the classification of MI tasks. Two methods of 2D-feature extraction from EEG data are contrasted Power Spectral Density and Continuous Wavelet Transform. For preserving the spatial interpretation of extracting EEG patterns, we project the multi-channel data using a topographic interpolation. Besides, we include a spatial dropping algorithm to remove the learned weights that reflect the localities not engaged with the elicited brain response. We evaluate two labeled scenarios of MI tasks bi-class and three-class. Obtained results in an MI database show that the thresholding strategy combined with Continuous Wavelet Transform improves the accuracy and enhances the interpretability of CNN architecture, showing that the highest contribution clusters over the sensorimotor cortex with a differentiated behavior of rhythms [Formula see text] and [Formula see text].
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Brain Inform Année: 2020 Type de document: Article Pays d'affiliation: Colombie

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Brain Inform Année: 2020 Type de document: Article Pays d'affiliation: Colombie
...