Your browser doesn't support javascript.
loading
Garlic Allelochemical Diallyl Disulfide Alleviates Autotoxicity in the Root Exudates Caused by Long-Term Continuous Cropping of Tomato.
Cheng, Fang; Ali, Muhammad; Liu, Ce; Deng, Rui; Cheng, Zhihui.
Affiliation
  • Cheng F; College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
  • Ali M; Key Laboratory for Plant Diversity and Biogeography of East Asia, Chinese Academy of Sciences, Kunming Institute of Botany, Kunming 650201, People's Republic of China.
  • Liu C; College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
  • Deng R; College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
  • Cheng Z; College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
J Agric Food Chem ; 68(42): 11684-11693, 2020 Oct 21.
Article de En | MEDLINE | ID: mdl-32991155
ABSTRACT
Continuous cropping obstacles seriously affect the sustainable production of tomatoes (Solanum lycopersicum L.). Researchers have found that intercropping with garlic (Allium sativum L.) could alleviate tomato continuous cropping obstacles. Diallyl disulfide (DADS) is the main allelochemical in garlic. However, the mechanism of DADS in alleviating tomato continuous cropping obstacles is still unknown. In this research, aqueous extracts of tomato continuous cropping soil were used to simulate the continuous cropping condition of tomato. Our results showed that DADS increased root activity and chlorophyll content and improved the activity of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and phenylalanine ammonia-lyase (PAL)) and the metabolism of nonenzymatic antioxidants (glutathione (GSH) and oxidized glutathione (GSSG)) in tomato plants. DADS treatment reduced the content of fatty acid esters in tomato root exudates (e.g., palmitate methyl ester, palmitoleic acid methyl ester, oleic acid methyl ester) and increased the level of substances such as dibutyl phthalate and 2,2'-methylenebis(6-tert-butyl-4-methylphenol). The higher concentrations of palmitate methyl ester inhibited tomato hypocotyl growth, while oleic acid methyl ester inhibited tomato root growth. Moreover, the application of DADS significantly inhibited the secretion of these esters in the root exudates. Therefore, it suggests that DADS may increase tomato resistance and promote tomato plant growth by increasing root activity and photosynthetic capacity and development to reduce autotoxicity of tomato.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Phéromones / Solanum lycopersicum / Disulfures / Composés allyliques / Exsudats végétaux / Ail Langue: En Journal: J Agric Food Chem Année: 2020 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Phéromones / Solanum lycopersicum / Disulfures / Composés allyliques / Exsudats végétaux / Ail Langue: En Journal: J Agric Food Chem Année: 2020 Type de document: Article
...