Your browser doesn't support javascript.
loading
Anethole Dithiolethione Increases Glutathione in Kidney by Inhibiting γ-Glutamyltranspeptidase: Biochemical Interpretation and Pharmacological Consequences.
Giustarini, Daniela; Galvagni, Federico; Dalle-Donne, Isabella; Milzani, Aldo; Lucattelli, Monica; De Cunto, Giovanna; Bartolini, Desirée; Galli, Francesco; Santucci, Annalisa; Rossi, Ranieri.
Affiliation
  • Giustarini D; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
  • Galvagni F; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
  • Dalle-Donne I; Department of Biosciences, University of Milan, Via Celoria 26, I-20133 Milan, Italy.
  • Milzani A; Department of Biosciences, University of Milan, Via Celoria 26, I-20133 Milan, Italy.
  • Lucattelli M; Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
  • De Cunto G; Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
  • Bartolini D; Department of Pharmaceutical Sciences, University of Perugia, Italy.
  • Galli F; Department of Pharmaceutical Sciences, University of Perugia, Italy.
  • Santucci A; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
  • Rossi R; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, I-53100 Siena, Italy.
Oxid Med Cell Longev ; 2020: 3562972, 2020.
Article de En | MEDLINE | ID: mdl-33062138
ABSTRACT

AIMS:

Anethole dithiolethione (ADT) is a marketed drug to treat xerostomia. Its mechanism of action is still unknown, but several preclinical studies indicate that it is able to increase intracellular glutathione (GSH) and protect against oxidative stress. Here, we investigated the molecular mechanisms behind these effects.

RESULTS:

Oral treatment of rats confirmed the GSH enhancing properties of ADT; among the different organs examined in this study, only the kidney showed a significant GSH increase that was already observed at low-dose treatments. The increase in GSH correlated with a decrease in γ-glutamyltranspeptidase (γ-GT) activity of the different tissues. In vitro and ex vivo experiments with tubular renal cells and isolated perfused rat kidney showed that the cellular uptake of intact GSH was correlated with the extracellular concentrations of GSH.

CONCLUSION:

s. The prominent in vivopharmacological effect of ADT was a marked increase of GSH concentration in the kidney and a decrease of some systemic and renal biomarkers of oxidative stress. In particular, by inhibition of γ-GT activity, it decreased the production cysteinylglycine, a thiol that has prooxidant effects as the consequence of its autooxidation. The activity of ADT as GSH enhancer in both the circulation and the kidney was long-lasting. All these characteristics make ADT a promising drug to protect the kidney, and in particular proximal tubule cells, from xenobiotic-induced damage.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Anéthole trithione / Gamma-Glutamyltransferase / Glutathion Limites: Animals / Humans / Male Langue: En Journal: Oxid Med Cell Longev Sujet du journal: METABOLISMO Année: 2020 Type de document: Article Pays d'affiliation: Italie

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Anéthole trithione / Gamma-Glutamyltransferase / Glutathion Limites: Animals / Humans / Male Langue: En Journal: Oxid Med Cell Longev Sujet du journal: METABOLISMO Année: 2020 Type de document: Article Pays d'affiliation: Italie