Your browser doesn't support javascript.
loading
Determining Physical Activity Characteristics from Wristband Data for Use in Automated Insulin Delivery Systems.
Sevil, Mert; Rashid, Mudassir; Maloney, Zacharie; Hajizadeh, Iman; Samadi, Sediqeh; Askari, Mohammad Reza; Hobbs, Nicole; Brandt, Rachel; Park, Minsun; Quinn, Laurie; Cinar, Ali.
Affiliation
  • Sevil M; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Rashid M; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Maloney Z; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Hajizadeh I; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Samadi S; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Askari MR; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Hobbs N; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Brandt R; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Park M; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Quinn L; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
  • Cinar A; Mert Sevil, Rachel Brandt, Nicole Hobbs and Zacharie Maloney are with the Department of Biomedical Engineering (BME); Mudassir Rashid, Mohammad Reza Askari, Iman Hajizadeh and Sedigeh Samadi are with the Department of Chemical and Biological Engineering (ChBE); Ali Cinar is with the Departments of C
IEEE Sens J ; 20(21): 12859-12870, 2020 Nov.
Article de En | MEDLINE | ID: mdl-33100923
ABSTRACT
Algorithms that can determine the type of physical activity (PA) and quantify the intensity can allow precision medicine approaches, such as automated insulin delivery systems that modulate insulin administration in response to PA. In this work, data from a multi-sensor wristband is used to design classifiers to distinguish among five different physical states (PS) (resting, activities of daily living, running, biking, and resistance training), and to develop models to estimate the energy expenditure (EE) of the PA for diabetes therapy. The data collected are filtered, features are extracted from the reconciled signals, and the extracted features are used by machine learning algorithms, including deep-learning techniques, to obtain accurate PS classification and EE estimation. The various machine learning techniques have different success rates ranging from 75.7% to 94.8% in classifying the five different PS. The deep neural network model with long short-term memory has 94.8% classification accuracy. We achieved 0.5 MET (Metabolic Equivalent of Task) root-mean-square error for EE estimation accuracy, relative to indirect calorimetry with randomly selected testing data (10% of collected data). We also demonstrate a 5% improvement in PS classification accuracy and a 0.34 MET decrease in the mean absolute error when using multi-sensor approach relative to using only accelerometer data.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies Langue: En Journal: IEEE Sens J Année: 2020 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies Langue: En Journal: IEEE Sens J Année: 2020 Type de document: Article