Your browser doesn't support javascript.
loading
Aerolysin nanopores decode digital information stored in tailored macromolecular analytes.
Cao, Chan; Krapp, Lucien F; Al Ouahabi, Abdelaziz; König, Niklas F; Cirauqui, Nuria; Radenovic, Aleksandra; Lutz, Jean-François; Peraro, Matteo Dal.
Affiliation
  • Cao C; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Krapp LF; Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.
  • Al Ouahabi A; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • König NF; Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland.
  • Cirauqui N; Université de Strasbourg, Centre national de la recherche scientifique (CNRS), Institute Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France.
  • Radenovic A; Université de Strasbourg, Centre national de la recherche scientifique (CNRS), Institute Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France.
  • Lutz JF; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Peraro MD; Department of Pharmaceutical Biotechnology, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
Sci Adv ; 6(50)2020 Dec.
Article de En | MEDLINE | ID: mdl-33298438
Digital data storage is a growing need for our society and finding alternative solutions than those based on silicon or magnetic tapes is a challenge in the era of "big data." The recent development of polymers that can store information at the molecular level has opened up new opportunities for ultrahigh density data storage, long-term archival, anticounterfeiting systems, and molecular cryptography. However, synthetic informational polymers are so far only deciphered by tandem mass spectrometry. In comparison, nanopore technology can be faster, cheaper, nondestructive and provide detection at the single-molecule level; moreover, it can be massively parallelized and miniaturized in portable devices. Here, we demonstrate the ability of engineered aerolysin nanopores to accurately read, with single-bit resolution, the digital information encoded in tailored informational polymers alone and in mixed samples, without compromising information density. These findings open promising possibilities to develop writing-reading technologies to process digital data using a biological-inspired platform.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Sci Adv Année: 2020 Type de document: Article Pays d'affiliation: Suisse Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Sci Adv Année: 2020 Type de document: Article Pays d'affiliation: Suisse Pays de publication: États-Unis d'Amérique