Your browser doesn't support javascript.
loading
Linker Deficiency, Aromatic Ring Fusion, and Electrocatalysis in a Porous Ni8-Pyrazolate Network.
Hu, Jieying; Deng, Xiangling; Zhang, Hu; Diao, Yingxue; Cheng, Shengxian; Zheng, Sai-Li; Liao, Wei-Ming; He, Jun; Xu, Zhengtao.
Affiliation
  • Hu J; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
  • Deng X; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
  • Zhang H; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
  • Diao Y; Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China.
  • Cheng S; Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China.
  • Zheng SL; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
  • Liao WM; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
  • He J; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, Guangdong, People's Republic of China.
  • Xu Z; Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China.
Inorg Chem ; 60(1): 161-166, 2021 Jan 04.
Article de En | MEDLINE | ID: mdl-33306390
ABSTRACT
The cruciform linker molecule here features two designer functions the pyrazole donors for framework construction, and the vicinal alkynyl units for benzannulation to form nanographene units into the Ni8-pyrazolate scaffold. Unlike the full 12 connections of the Ni8(OH)4(H2O)2 clusters in other Ni8-pyrazolate networks, significant linker deficiency was observed here, leaving about half of the Ni(II) sites capped by acetate ligands, which can be potentially removed to open the metal sites for reactivity. The crystalline Ni8-pyrazolate scaffold also retains the crystalline order even after thermal treatments (up to 300 °C) that served to partially graphitize the neighboring alkyne units. The resultant nanographene components enhance the electroactive properties of the porous hosts, achieving hydrogen evolution reaction (HER) activity that rivals that of topical nickel/palladium-enabled materials.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Inorg Chem Année: 2021 Type de document: Article

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Inorg Chem Année: 2021 Type de document: Article