Your browser doesn't support javascript.
loading
The Tukey trend test: Multiplicity adjustment using multiple marginal models.
Schaarschmidt, Frank; Ritz, Christian; Hothorn, Ludwig A.
Affiliation
  • Schaarschmidt F; Department of Biostatistics, Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany.
  • Ritz C; Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark.
  • Hothorn LA; Institute of Biostatistics, Faculty of Natural Sciences, Leibniz University Hannover, Hannover, Germany.
Biometrics ; 78(2): 789-797, 2022 06.
Article de En | MEDLINE | ID: mdl-33559878
In dose-response analysis, it is a challenge to choose appropriate linear or curvilinear shapes when considering multiple, differently scaled endpoints. It has been proposed to fit several marginal regression models that try sets of different transformations of the dose levels as explanatory variables for each endpoint. However, the multiple testing problem underlying this approach, involving correlated parameter estimates for the dose effect between and within endpoints, could only be adjusted heuristically. An asymptotic correction for multiple testing can be derived from the score functions of the marginal regression models. Based on a multivariate t-distribution, the correction provides a one-step adjustment of p-values that accounts for the correlation between estimates from different marginal models. The advantages of the proposed methodology are demonstrated through three example datasets, involving generalized linear models with differently scaled endpoints, differing covariates, and a mixed effect model and through simulation results. The methodology is implemented in an R package.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Modèles statistiques Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Biometrics Année: 2022 Type de document: Article Pays d'affiliation: Allemagne Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Modèles statistiques Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Biometrics Année: 2022 Type de document: Article Pays d'affiliation: Allemagne Pays de publication: États-Unis d'Amérique