Your browser doesn't support javascript.
loading
Can deep learning beat numerical weather prediction?
Schultz, M G; Betancourt, C; Gong, B; Kleinert, F; Langguth, M; Leufen, L H; Mozaffari, A; Stadtler, S.
Affiliation
  • Schultz MG; Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany.
  • Betancourt C; Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany.
  • Gong B; Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany.
  • Kleinert F; Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany.
  • Langguth M; Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany.
  • Leufen LH; Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany.
  • Mozaffari A; Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany.
  • Stadtler S; Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany.
Philos Trans A Math Phys Eng Sci ; 379(2194): 20200097, 2021 Apr 05.
Article de En | MEDLINE | ID: mdl-33583266
The recent hype about artificial intelligence has sparked renewed interest in applying the successful deep learning (DL) methods for image recognition, speech recognition, robotics, strategic games and other application areas to the field of meteorology. There is some evidence that better weather forecasts can be produced by introducing big data mining and neural networks into the weather prediction workflow. Here, we discuss the question of whether it is possible to completely replace the current numerical weather models and data assimilation systems with DL approaches. This discussion entails a review of state-of-the-art machine learning concepts and their applicability to weather data with its pertinent statistical properties. We think that it is not inconceivable that numerical weather models may one day become obsolete, but a number of fundamental breakthroughs are needed before this goal comes into reach. This article is part of the theme issue 'Machine learning for weather and climate modelling'.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Philos Trans A Math Phys Eng Sci Sujet du journal: BIOFISICA / ENGENHARIA BIOMEDICA Année: 2021 Type de document: Article Pays d'affiliation: Allemagne Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Type d'étude: Prognostic_studies / Risk_factors_studies Langue: En Journal: Philos Trans A Math Phys Eng Sci Sujet du journal: BIOFISICA / ENGENHARIA BIOMEDICA Année: 2021 Type de document: Article Pays d'affiliation: Allemagne Pays de publication: Royaume-Uni