Your browser doesn't support javascript.
loading
Designing nanofibrous membrane with biomimetic caterpillar-like structured for highly-efficient and simultaneous removal of insoluble emulsified oils and soluble dyes towards sewage remediation.
Li, Shuangshuang; He, Yi; Zhang, Liyun; Li, Jianbo; Nie, Yiling; Li, Hongjie; Yin, Xiangying; Bai, Yang.
Affiliation
  • Li S; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China.
  • He Y; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China. Electronic address: chemheyi@swpu.edu.cn.
  • Zhang L; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China. Electronic address: 1042924616@qq.com.
  • Li J; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China. Electronic address: ljb0418@163.com.
  • Nie Y; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China.
  • Li H; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China.
  • Yin X; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China; College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China.
  • Bai Y; State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, PR China.
J Hazard Mater ; 414: 125442, 2021 07 15.
Article de En | MEDLINE | ID: mdl-33662794
Purification of insoluble emulsified oils and soluble organic pollutants from sewage has attracted tremendous attention in today's society. Herein, a stable and environmentally friendly nanofibrous membrane with hierarchical caterpillar-like structure was fabricated via in-situ hydrothermal growing the nickel-cobalt layered double hydroxides (NiCo-LDHs) on tche polyacrylonitrile (PAN) electrospun nanofibers. The wrapped hydrophilic NiCo-LDHs constructed the hierarchical structure and endowed the membrane attractive superhydrophilicity (≈ 0°)/underwater superoleophobicity (≈ 161°) and enhanced oil-repellency performance. Meanwhile, the NiCo-LDH@PANI/oPAN NFMs can display the ultra-fast flux of SSEs (xylene/water emulsion, 4175 L m-2 h-1) and satisfactory separation efficiency (99.07%). Moreover, the introduction of positively charged NiCo-LDHs increased plentiful adsorption active sites for membranes, which is beneficial to demulsify ionic SSEs and adsorb organic pollutants. Finally, for simultaneous purification of complex sewage by the dead-end and cross-flow filtration experiment, the composite membrane both displayed splendid removal rate of oil (> 99.0%) and dyes (> 99.0%), robust regeneration recycle-ability and no secondary pollution. Hence, it is expected that such strategy of combining electrospun and chelating-assisted in-situ hydrothermal can provide a low energy consumption and high decontamination technology for severe environmental crisis.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Hazard Mater Sujet du journal: SAUDE AMBIENTAL Année: 2021 Type de document: Article Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: J Hazard Mater Sujet du journal: SAUDE AMBIENTAL Année: 2021 Type de document: Article Pays de publication: Pays-Bas