Your browser doesn't support javascript.
loading
Two-Dimensional Mechano-thermoelectric Heterojunctions for Self-Powered Strain Sensors.
Wang, Ying-Yu; Chen, Ding-Rui; Wu, Jen-Kai; Wang, Tian-Hsin; Chuang, Chiashain; Huang, Ssu-Yen; Hsieh, Wen-Pin; Hofmann, Mario; Chang, Yuan-Huei; Hsieh, Ya-Ping.
Affiliation
  • Wang YY; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
  • Chen DR; Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
  • Wu JK; International Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
  • Wang TH; Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan.
  • Chuang C; Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.
  • Huang SY; Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
  • Hsieh WP; Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan.
  • Hofmann M; Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan.
  • Chang YH; Department of Physics, National Taiwan University, Taipei 10617, Taiwan.
  • Hsieh YP; Institute of Earth Science, Academia Sinica, Taipei 11529, Taiwan.
Nano Lett ; 21(16): 6990-6997, 2021 08 25.
Article de En | MEDLINE | ID: mdl-34387505
We here demonstrate the multifunctional properties of atomically thin heterojunctions that are enabled by their strong interfacial interactions and their application toward self-powered sensors with unprecedented performance. Bonding between tin diselenide and graphene produces thermoelectric and mechanoelectric properties beyond the ability of either component. A record-breaking ZT of 2.43 originated from the synergistic combination of graphene's high carrier conductivity and SnSe2-mediated thermal conductivity lowering. Moreover, spatially varying interaction at the SnSe2/graphene interface produces stress localization that results in a novel 2D-crack-assisted strain sensing mechanism whose sensitivity (GF = 450) is superior to all other 2D materials. Finally, a graphene-assisted growth process permits the formation of high-quality heterojunctions directly on polymeric substrates for flexible and transparent sensors that achieve self-powered strain sensing from a small temperature gradient. Our work enhances the fundamental understanding of multifunctionality at the atomic scale and provides a route toward structural health monitoring through ubiquitous and smart devices.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Dispositifs électroniques portables / Graphite Langue: En Journal: Nano Lett Année: 2021 Type de document: Article Pays d'affiliation: Taïwan Pays de publication: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Dispositifs électroniques portables / Graphite Langue: En Journal: Nano Lett Année: 2021 Type de document: Article Pays d'affiliation: Taïwan Pays de publication: États-Unis d'Amérique