Your browser doesn't support javascript.
loading
Inhibition of acid ceramidase elicits mitochondrial dysfunction and oxidative stress in pancreatic cancer cells.
Taniai, Tomohiko; Shirai, Yoshihiro; Shimada, Yohta; Hamura, Ryoga; Yanagaki, Mitsuru; Takada, Naoki; Horiuchi, Takashi; Haruki, Koichiro; Furukawa, Kenei; Uwagawa, Tadashi; Tsuboi, Kazuhito; Okamoto, Yasuo; Shimada, Shu; Tanaka, Shinji; Ohashi, Toya; Ikegami, Toru.
Affiliation
  • Taniai T; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
  • Shirai Y; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
  • Shimada Y; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
  • Hamura R; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
  • Yanagaki M; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
  • Takada N; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
  • Horiuchi T; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
  • Haruki K; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
  • Furukawa K; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
  • Uwagawa T; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
  • Tsuboi K; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
  • Okamoto Y; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
  • Shimada S; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
  • Tanaka S; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
  • Ohashi T; Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan.
  • Ikegami T; Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
Cancer Sci ; 112(11): 4570-4579, 2021 Nov.
Article de En | MEDLINE | ID: mdl-34459070
ABSTRACT
Although the inhibition of acid ceramidase (AC) is known to induce antitumor effects in various cancers, there are few reports in pancreatic cancer, and the underlying mechanisms remain unclear. Moreover, there is currently no safe administration method of AC inhibitor. Here the effects of gene therapy using siRNA and shRNA for AC inhibition with its mechanisms for pancreatic cancer were investigated. The inhibition of AC by siRNA and shRNA using an adeno-associated virus 8 (AAV8) vector had antiproliferative effects by inducing apoptosis in pancreatic cancer cells and xenograft mouse model. Acid ceramidase inhibition elicits mitochondrial dysfunction, reactive oxygen species accumulation, and manganese superoxide dismutase suppression, resulting in apoptosis of pancreatic cancer cells accompanied by ceramide accumulation. These results elucidated the mechanisms underlying the antitumor effect of AC inhibition in pancreatic cancer cells and suggest the potential of the AAV8 vector to inhibit AC as a therapeutic strategy.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Tumeurs du pancréas / Thérapie génétique / Stress oxydatif / Maladies mitochondriales / Petit ARN interférent / Acid Ceramidase Type d'étude: Clinical_trials Limites: Animals / Humans / Male Langue: En Journal: Cancer Sci Année: 2021 Type de document: Article Pays d'affiliation: Japon

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Tumeurs du pancréas / Thérapie génétique / Stress oxydatif / Maladies mitochondriales / Petit ARN interférent / Acid Ceramidase Type d'étude: Clinical_trials Limites: Animals / Humans / Male Langue: En Journal: Cancer Sci Année: 2021 Type de document: Article Pays d'affiliation: Japon
...