Your browser doesn't support javascript.
loading
Ga2O3-on-SiC Composite Wafer for Thermal Management of Ultrawide Bandgap Electronics.
Song, Yiwen; Shoemaker, Daniel; Leach, Jacob H; McGray, Craig; Huang, Hsien-Lien; Bhattacharyya, Arkka; Zhang, Yingying; Gonzalez-Valle, C Ulises; Hess, Tina; Zhukovsky, Sarit; Ferri, Kevin; Lavelle, Robert M; Perez, Carlos; Snyder, David W; Maria, Jon-Paul; Ramos-Alvarado, Bladimir; Wang, Xiaojia; Krishnamoorthy, Sriram; Hwang, Jinwoo; Foley, Brian M; Choi, Sukwon.
Affiliation
  • Song Y; Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Shoemaker D; Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Leach JH; Kyma Technologies, Inc., Raleigh, North Carolina 27617, United States.
  • McGray C; Modern Microsystems, Gaithersburg, Maryland 20878, United States.
  • Huang HL; Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
  • Bhattacharyya A; Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, United States.
  • Zhang Y; Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States.
  • Gonzalez-Valle CU; Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Hess T; Kyma Technologies, Inc., Raleigh, North Carolina 27617, United States.
  • Zhukovsky S; Modern Microsystems, Gaithersburg, Maryland 20878, United States.
  • Ferri K; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Lavelle RM; Electronic Materials and Devices Department, Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Perez C; Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Snyder DW; Electronic Materials and Devices Department, Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Maria JP; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Ramos-Alvarado B; Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Wang X; Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States.
  • Krishnamoorthy S; Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, United States.
  • Hwang J; Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
  • Foley BM; Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, United States.
  • Choi S; Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Appl Mater Interfaces ; 13(34): 40817-40829, 2021 Sep 01.
Article de En | MEDLINE | ID: mdl-34470105
ABSTRACT
ß-phase gallium oxide (Ga2O3) is an emerging ultrawide bandgap (UWBG) semiconductor (EG ∼ 4.8 eV), which promises generational improvements in the performance and manufacturing cost over today's commercial wide bandgap power electronics based on GaN and SiC. However, overheating has been identified as a major bottleneck to the performance and commercialization of Ga2O3 device technologies. In this work, a novel Ga2O3/4H-SiC composite wafer with high heat transfer performance and an epi-ready surface finish has been developed using a fusion-bonding method. By taking advantage of low-temperature metalorganic vapor phase epitaxy, a Ga2O3 epitaxial layer was successfully grown on the composite wafer while maintaining the structural integrity of the composite wafer without causing interface damage. An atomically smooth homoepitaxial film with a room-temperature Hall mobility of ∼94 cm2/Vs and a volume charge of ∼3 × 1017 cm-3 was achieved at a growth temperature of 600 °C. Phonon transport across the Ga2O3/4H-SiC interface has been studied using frequency-domain thermoreflectance and a differential steady-state thermoreflectance approach. Scanning transmission electron microscopy analysis suggests that phonon transport across the Ga2O3/4H-SiC interface is dominated by the thickness of the SiNx bonding layer and an unintentionally formed SiOx interlayer. Extrinsic effects that impact the thermal conductivity of the 6.5 µm thick Ga2O3 layer were studied via time-domain thermoreflectance. Thermal simulation was performed to estimate the improvement of the thermal performance of a hypothetical single-finger Ga2O3 metal-semiconductor field-effect transistor fabricated on the composite substrate. This novel power transistor topology resulted in a ∼4.3× reduction in the junction-to-package device thermal resistance. Furthermore, an even more pronounced cooling effect is demonstrated when the composite wafer is implemented into the device design of practical multifinger devices. These innovations in device-level thermal management give promise to the full exploitation of the promising benefits of the UWBG material, which will lead to significant improvements in the power density and efficiency of power electronics over current state-of-the-art commercial devices.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2021 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: ACS Appl Mater Interfaces Sujet du journal: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Année: 2021 Type de document: Article Pays d'affiliation: États-Unis d'Amérique
...