Your browser doesn't support javascript.
loading
Molecular dynamics simulations of doxorubicin in sphingomyelin-based lipid membranes.
Siani, Paulo; Donadoni, Edoardo; Ferraro, Lorenzo; Re, Francesca; Di Valentin, Cristiana.
Affiliation
  • Siani P; Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
  • Donadoni E; Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
  • Ferraro L; Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
  • Re F; School of Medicine and Surgery, University of Milano-Bicocca, via Raoul Follereau 3, Vedano al Lambro, MB 20854, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy.
  • Di Valentin C; Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy. Electronic address: cristiana.divalentin@unimib.it.
Biochim Biophys Acta Biomembr ; 1864(1): 183763, 2022 02 01.
Article de En | MEDLINE | ID: mdl-34506799
ABSTRACT
Doxorubicin (DOX) is one of the most efficient antitumor drugs employed in numerous cancer therapies. Its incorporation into lipid-based nanocarriers, such as liposomes, improves the drug targeting into tumor cells and reduces drug side effects. The carriers' lipid composition is expected to affect the interactions of DOX and its partitioning into liposomal membranes. To get a rational insight into this aspect and determine promising lipid compositions, we use numerical simulations, which provide unique information on DOX-membrane interactions at the atomic level of resolution. In particular, we combine classical molecular dynamics simulations and free energy calculations to elucidate the mechanism of penetration of a protonated Doxorubicin molecule (DOX+) into potential liposome membranes, here modeled as lipid bilayers based on mixtures of phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol lipid molecules, of different compositions and lipid phases. Moreover, we analyze DOX+ partitioning into relevant regions of SM-based lipid bilayer systems using a combination of free energy methods. Our results show that DOX+ penetration and partitioning are facilitated into less tightly packed SM-based membranes and are dependent on lipid composition. This work paves the way to further investigations of optimal formulations for lipid-based carriers, such as those associated with pH-responsive membranes.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Sphingomyéline / Doxorubicine / Double couche lipidique / Lipides membranaires Limites: Humans Langue: En Journal: Biochim Biophys Acta Biomembr Année: 2022 Type de document: Article Pays d'affiliation: Italie

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Sphingomyéline / Doxorubicine / Double couche lipidique / Lipides membranaires Limites: Humans Langue: En Journal: Biochim Biophys Acta Biomembr Année: 2022 Type de document: Article Pays d'affiliation: Italie