Your browser doesn't support javascript.
loading
Intrinsic neural network dynamics in catatonia.
Sambataro, Fabio; Hirjak, Dusan; Fritze, Stefan; Kubera, Katharina M; Northoff, Georg; Calhoun, Vince D; Meyer-Lindenberg, Andreas; Wolf, Robert C.
Affiliation
  • Sambataro F; Department of Neuroscience (DNS), University of Padova, Padova, Italy.
  • Hirjak D; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • Fritze S; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • Kubera KM; Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany.
  • Northoff G; Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada.
  • Calhoun VD; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia.
  • Meyer-Lindenberg A; Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • Wolf RC; Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany.
Hum Brain Mapp ; 42(18): 6087-6098, 2021 12 15.
Article de En | MEDLINE | ID: mdl-34585808
ABSTRACT
Catatonia is a transnosologic psychomotor syndrome with high prevalence in schizophrenia spectrum disorders (SSD). There is mounting neuroimaging evidence that catatonia is associated with aberrant frontoparietal, thalamic and cerebellar regions. Large-scale brain network dynamics in catatonia have not been investigated so far. In this study, resting-state fMRI data from 58 right-handed SSD patients were considered. Catatonic symptoms were examined on the Northoff Catatonia Rating Scale (NCRS). Group spatial independent component analysis was carried out with a multiple analysis of covariance (MANCOVA) approach to estimate and test the underlying intrinsic components (ICs) in SSD patients with (NCRS total score ≥ 3; n = 30) and without (NCRS total score = 0; n = 28) catatonia. Functional network connectivity (FNC) during rest was calculated between pairs of ICs and transient changes in connectivity were estimated using sliding windowing and clustering (to capture both static and dynamic FNC). Catatonic patients showed increased static FNC in cerebellar networks along with decreased low frequency oscillations in basal ganglia (BG) networks. Catatonic patients had reduced state changes and dwelled more in a state characterized by high within-network correlation of the sensorimotor, visual, and default-mode network with respect to noncatatonic patients. Finally, in catatonic patients according to DSM-IV-TR (n = 44), there was a significant correlation between increased within FNC in cortico-striatal state and NCRS motor scores. The data support a neuromechanistic model of catatonia that emphasizes a key role of disrupted sensorimotor network control during distinct functional states.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Encéphale / Catatonie / Connectome / Réseau nerveux Type d'étude: Prognostic_studies / Risk_factors_studies Limites: Adult / Female / Humans / Male / Middle aged Langue: En Journal: Hum Brain Mapp Sujet du journal: CEREBRO Année: 2021 Type de document: Article Pays d'affiliation: Italie

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Encéphale / Catatonie / Connectome / Réseau nerveux Type d'étude: Prognostic_studies / Risk_factors_studies Limites: Adult / Female / Humans / Male / Middle aged Langue: En Journal: Hum Brain Mapp Sujet du journal: CEREBRO Année: 2021 Type de document: Article Pays d'affiliation: Italie
...