Your browser doesn't support javascript.
loading
Structure Activity Relationships for a Series of Eticlopride-Based Dopamine D2/D3 Receptor Bitopic Ligands.
Shaik, Anver Basha; Boateng, Comfort A; Battiti, Francisco O; Bonifazi, Alessandro; Cao, Jianjing; Chen, Li; Chitsazi, Rezvan; Ravi, Saiprasad; Lee, Kuo Hao; Shi, Lei; Newman, Amy Hauck.
Affiliation
  • Shaik AB; Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Boateng CA; Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Battiti FO; Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Bonifazi A; Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Cao J; Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Chen L; Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Chitsazi R; Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Ravi S; Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Lee KH; Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Shi L; Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
  • Newman AH; Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States.
J Med Chem ; 64(20): 15313-15333, 2021 10 28.
Article de En | MEDLINE | ID: mdl-34636551
ABSTRACT
The crystal structure of the dopamine D3 receptor (D3R) in complex with eticlopride inspired the design of bitopic ligands that explored (1) N-alkylation of the eticlopride's pyrrolidine ring, (2) shifting of the position of the pyrrolidine nitrogen, (3) expansion of the pyrrolidine ring system, and (4) incorporation of O-alkylations at the 4-position. Structure activity relationships (SAR) revealed that moving the N- or expanding the pyrrolidine ring was detrimental to D2R/D3R binding affinities. Small pyrrolidine N-alkyl groups were poorly tolerated, but the addition of a linker and secondary pharmacophore (SP) improved affinities. Moreover, O-alkylated analogues showed higher binding affinities compared to analogously N-alkylated compounds, e.g., O-alkylated 33 (D3R, 0.436 nM and D2R, 1.77 nM) vs the N-alkylated 11 (D3R, 6.97 nM and D2R, 25.3 nM). All lead molecules were functional D2R/D3R antagonists. Molecular models confirmed that 4-position modifications would be well-tolerated for future D2R/D3R bioconjugate tools that require long linkers and or sterically bulky groups.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Salicylamides / Récepteur D2 de la dopamine / Récepteur D3 de la dopamine Limites: Humans Langue: En Journal: J Med Chem Sujet du journal: QUIMICA Année: 2021 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Salicylamides / Récepteur D2 de la dopamine / Récepteur D3 de la dopamine Limites: Humans Langue: En Journal: J Med Chem Sujet du journal: QUIMICA Année: 2021 Type de document: Article Pays d'affiliation: États-Unis d'Amérique