Your browser doesn't support javascript.
loading
REGγ regulates circadian clock by modulating BMAL1 protein stability.
Kubra, Syeda; Zhang, Haiyang; Si, Youwen; Gao, Xiao; Wang, Tianzhen; Pan, Linian; Li, Lei; Zhong, Nanzhe; Fu, Junjiang; Zhang, Bianhong; Li, Xiaotao.
Affiliation
  • Kubra S; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
  • Zhang H; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
  • Si Y; Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai, China.
  • Gao X; Department of Orthopedic Oncology and Spine Tumor Center, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China.
  • Wang T; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
  • Pan L; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
  • Li L; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China.
  • Zhong N; Department of Orthopedic Oncology and Spine Tumor Center, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, 200003, Shanghai, China. nanzhezhong@outlook.com.
  • Fu J; Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, 646000, Luzhou, Sichuan, China. fujunjiang@swmu.edu.cn.
  • Zhang B; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China. bhzhang@bio.ecnu.edu.cn.
  • Li X; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, China. xiaotaol@bcm.edu.
Cell Death Discov ; 7(1): 335, 2021 Nov 05.
Article de En | MEDLINE | ID: mdl-34741025
ABSTRACT
Endogenous clocks generate rhythms in gene expression, which facilitates the organisms to cope through periodic environmental variations in accordance with 24-h light/dark time. A core question that needs to be elucidated is how such rhythms proliferate throughout the cells and regulate the dynamic physiology. In this study, we demonstrate the role of REGγ as a new regulator of circadian clock in mice, primary MEF, and SY5Y cells. Assessment of circadian conduct reveals a difference in circadian period, wheel mode, and the ability to acclimate the external light stimulus between WT and KO littermates. Compared to WT mice, REGγ KO mice attain the phase delay behavior upon light shock at early night. During the variation of 12/12 h light/dark (LD) exposure, levels of Per1, Per2, Cry1, Clock, Bmal1, and Rorα circadian genes in suprachiasmatic nucleus are significantly higher in REGγ KO than in WT mice, concomitant with remarkable changes in BMAL1 and PER2 proteins. In cultured cells depleted of REGγ, serum shock induces early response of the circadian genes Per1 and Per2 with the cyclic rhythm maintained. Mechanistic study indicates that REGγ directly degrades BMAL1 by the non-canonical proteasome pathway independent of ATP and ubiquitin. Silencing BMAL1 abrogates the changes in circadian genes in REGγ-deficient cells. However, inhibition of GSK-3ß, a known promoter for degradation of BMAL1, exacerbates the action of REGγ depletion. In conclusion, our findings define REGγ as a new factor, which functions as a rheostat of circadian rhythms to mitigate the levels of Per1 and Per2 via proteasome-dependent degradation of BMAL1.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Cell Death Discov Année: 2021 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Cell Death Discov Année: 2021 Type de document: Article Pays d'affiliation: Chine