Your browser doesn't support javascript.
loading
Phosphatidylserine receptors enhance SARS-CoV-2 infection.
Bohan, Dana; Van Ert, Hanora; Ruggio, Natalie; Rogers, Kai J; Badreddine, Mohammad; Aguilar Briseño, José A; Elliff, Jonah M; Rojas Chavez, Roberth Anthony; Gao, Boning; Stokowy, Tomasz; Christakou, Eleni; Kursula, Petri; Micklem, David; Gausdal, Gro; Haim, Hillel; Minna, John; Lorens, James B; Maury, Wendy.
Affiliation
  • Bohan D; Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America.
  • Van Ert H; Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America.
  • Ruggio N; Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America.
  • Rogers KJ; Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America.
  • Badreddine M; Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America.
  • Aguilar Briseño JA; Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America.
  • Elliff JM; Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America.
  • Rojas Chavez RA; Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America.
  • Gao B; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
  • Stokowy T; Department of Biomedicine, University of Bergen, Bergen, Norway.
  • Christakou E; Department of Biomedicine, University of Bergen, Bergen, Norway.
  • Kursula P; BerGenBio ASA, Bergen, Norway.
  • Micklem D; Department of Biomedicine, University of Bergen, Bergen, Norway.
  • Gausdal G; Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
  • Haim H; BerGenBio ASA, Bergen, Norway.
  • Minna J; BerGenBio ASA, Bergen, Norway.
  • Lorens JB; Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America.
  • Maury W; Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
PLoS Pathog ; 17(11): e1009743, 2021 11.
Article de En | MEDLINE | ID: mdl-34797899
ABSTRACT
Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Récepteurs de surface cellulaire / SARS-CoV-2 / COVID-19 Limites: Animals / Female / Humans Langue: En Journal: PLoS Pathog Année: 2021 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Récepteurs de surface cellulaire / SARS-CoV-2 / COVID-19 Limites: Animals / Female / Humans Langue: En Journal: PLoS Pathog Année: 2021 Type de document: Article Pays d'affiliation: États-Unis d'Amérique
...