Your browser doesn't support javascript.
loading
Modulating the electrocatalytic CO2 reduction performances of bismuth nanoparticles with carbon substrates with controlled degrees of oxidation.
Wu, Si-Qian; Hao, Yu-Chen; Chen, Li-Wei; Li, Jiani; Yu, Zi-Long; Zhu, Zhejiaji; Liu, Di; Su, Xin; Hu, Linyu; Huang, Hui-Zi; Yin, An-Xiang.
Affiliation
  • Wu SQ; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Hao YC; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Chen LW; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Li J; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Yu ZL; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Zhu Z; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Liu D; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Su X; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Hu L; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Huang HZ; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
  • Yin AX; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China. yin@bit
Nanoscale ; 13(47): 20091-20097, 2021 Dec 13.
Article de En | MEDLINE | ID: mdl-34846444
The catalytic performances of metal nanoparticles can be widely tuned and promoted by the metal-support interactions. Here, we report that the morphologies and electrocatalytic CO2 reduction reaction (CO2RR) properties of bismuth nanoparticles (BiNPs) can be rationally modulated by their interactions with carbon black (CB) supports by controlling the degree of surface oxidation. Appropriately oxidized CB supports can provide sufficient oxygen-containing groups for anchoring BiNPs with tunable sizes and surface areas, desirable key intermediate adsorption abilities, appropriate surface wettability, and adequate electron transfer abilities. As a result, the optimized Bi/CB catalysts exhibited a promoted CO2RR performance with a Faradaic efficiency of 94% and a current density of 16.7 mA cm-2 for HCOO- at -0.9 V versus a reversible hydrogen electrode. Our results demonstrate the significance of regulating the interactions between supports and metal nanoparticles for both synthesis of the catalyst and electrolysis applications, which may find broader applicability in more electrocatalyst designs.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nanoscale Année: 2021 Type de document: Article Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nanoscale Année: 2021 Type de document: Article Pays de publication: Royaume-Uni