Your browser doesn't support javascript.
loading
Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries.
Ran, Qing; Shi, Hang; Meng, Huan; Zeng, Shu-Pei; Wan, Wu-Bin; Zhang, Wei; Wen, Zi; Lang, Xing-You; Jiang, Qing.
Affiliation
  • Ran Q; Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
  • Shi H; Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
  • Meng H; Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
  • Zeng SP; Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
  • Wan WB; Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
  • Zhang W; Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
  • Wen Z; Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
  • Lang XY; Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China. xylang@jlu.edu.cn.
  • Jiang Q; State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China. xylang@jlu.edu.cn.
Nat Commun ; 13(1): 576, 2022 Jan 31.
Article de En | MEDLINE | ID: mdl-35102182
ABSTRACT
Aqueous aluminum batteries are promising post-lithium battery technologies for large-scale energy storage applications because of the raw materials abundance, low costs, safety and high theoretical capacity. However, their development is hindered by the unsatisfactory electrochemical behaviour of the Al metal electrode due to the presence of an oxide layer and hydrogen side reaction. To circumvent these issues, we report aluminum-copper alloy lamellar heterostructures as anode active materials. These alloys improve the Al-ion electrochemical reversibility (e.g., achieving dendrite-free Al deposition during stripping/plating cycles) by using periodic galvanic couplings of alternating anodic α-aluminum and cathodic intermetallic Al2Cu nanometric lamellas. In symmetric cell configuration with a low oxygen concentration (i.e., 0.13 mg L-1) aqueous electrolyte solution, the lamella-nanostructured eutectic Al82Cu18 alloy electrode allows Al stripping/plating for 2000 h with an overpotential lower than ±53 mV. When the Al82Cu18 anode is tested in combination with an AlxMnO2 cathode material, the aqueous full cell delivers specific energy of ~670 Wh kg-1 at 100 mA g-1 and an initial discharge capacity of ~400 mAh g-1 at 500 mA g-1 with a capacity retention of 83% after 400 cycles.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2022 Type de document: Article Pays d'affiliation: Chine

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nat Commun Sujet du journal: BIOLOGIA / CIENCIA Année: 2022 Type de document: Article Pays d'affiliation: Chine