Your browser doesn't support javascript.
loading
Magnetotransport Studies of Encapsulated Topological Insulator Bi2Se3 Nanoribbons.
Kunakova, Gunta; Kauranens, Edijs; Niherysh, Kiryl; Bechelany, Mikhael; Smits, Krisjanis; Mozolevskis, Gatis; Bauch, Thilo; Lombardi, Floriana; Erts, Donats.
Affiliation
  • Kunakova G; Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia.
  • Kauranens E; Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia.
  • Niherysh K; Institute of Chemical Physics, University of Latvia, 19 Raina Blvd., LV-1586 Riga, Latvia.
  • Bechelany M; Research and Development Department, Integrated Micro- and Nanosystems, Belarusian State University of Informatics and Radioelectronics, P. Brovki Str. 6, 220013 Minsk, Belarus.
  • Smits K; Institut Européen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34095 Montpellier, France.
  • Mozolevskis G; Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia.
  • Bauch T; Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia.
  • Lombardi F; Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Goteborg, Sweden.
  • Erts D; Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Goteborg, Sweden.
Nanomaterials (Basel) ; 12(5)2022 Feb 24.
Article de En | MEDLINE | ID: mdl-35269256
ABSTRACT
The majority of proposed exotic applications employing 3D topological insulators require high-quality materials with reduced dimensions. Catalyst-free, PVD-grown Bi2Se3 nanoribbons are particularly promising for these applications due to the extraordinarily high mobility of their surface Dirac states, and low bulk carrier densities. However, these materials are prone to the formation of surface accumulation layers; therefore, the implementation of surface encapsulation layers and the choice of appropriate dielectrics for building gate-tunable devices are important. In this work, all-around ZnO-encapsulated nanoribbons are investigated. Gate-dependent magnetotransport measurements show improved charge transport characteristics as reduced nanoribbon/substrate interface carrier densities compared to the values obtained for the as-grown nanoribbons on SiO2 substrates.
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nanomaterials (Basel) Année: 2022 Type de document: Article Pays d'affiliation: Lettonie

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nanomaterials (Basel) Année: 2022 Type de document: Article Pays d'affiliation: Lettonie