Your browser doesn't support javascript.
loading
Classification of EEG signals: An interpretable approach using functional data analysis.
Yi, Yuyan; Billor, Nedret; Liang, Mingli; Cao, Xuan; Ekstrom, Arne; Zheng, Jingyi.
Affiliation
  • Yi Y; Department of Mathematics and Statistics, Auburn University, USA. Electronic address: yzy0080@auburn.edu.
  • Billor N; Department of Mathematics and Statistics, Auburn University, USA. Electronic address: billone@auburn.edu.
  • Liang M; Department of Psychiatry, Department of Neurosurgery, Yale University, USA. Electronic address: mingli.liang@yale.edu.
  • Cao X; Department of Mathematical Sciences, University of Cincinnati, USA. Electronic address: caox4@ucmail.uc.edu.
  • Ekstrom A; Department of Psychology, University of Arizona, USA. Electronic address: adekstrom@arizona.edu.
  • Zheng J; Department of Mathematics and Statistics, Auburn University, USA. Electronic address: jzz0121@auburn.edu.
J Neurosci Methods ; 376: 109609, 2022 07 01.
Article de En | MEDLINE | ID: mdl-35483504
Electroencephalography (EEG) is a noninvasive method to record electrical activity of the brain. The EEG data is continuous flow of voltages, in this paper, we consider them as functional data, and propose a three-stage algorithm based on functional data analysis, with the advantage of interpretability. Specifically, the time and frequency information are extracted by wavelet transform in the first stage. Then, functional testing is utilized to select EEG channels and frequencies that show significant differences for different human behaviors. In the third stage, we propose to use penalized multiple functional logistic regression to interpretably classify human behaviors. With simulation and a scalp EEG data as validation set, we show that the proposed three-stage algorithm provides an interpretable classification of the scalp EEG signals.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Électroencéphalographie / Analyse de données Limites: Humans Langue: En Journal: J Neurosci Methods Année: 2022 Type de document: Article Pays de publication: Pays-Bas

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Électroencéphalographie / Analyse de données Limites: Humans Langue: En Journal: J Neurosci Methods Année: 2022 Type de document: Article Pays de publication: Pays-Bas