Your browser doesn't support javascript.
loading
Dynamic Thiol-Disulfide Homeostasis in Children With ß-Thalassemia Trait.
Kurucu, Burçak; Fettah, Ali; Çapkinoglu, Emre; Öner, Nergiz; Eren, Funda; Erel, Özcan; Yesil, Sule; Sahin, Gürses.
Affiliation
  • Kurucu B; Department of Pediatric Hematology and Oncology, University of Healthy Sciences, Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey.
  • Fettah A; Department of Pediatric Hematology and Oncology, University of Healthy Sciences, Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey.
  • Çapkinoglu E; Department of Pediatric Hematology and Oncology, University of Healthy Sciences, Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey.
  • Öner N; Department of Pediatric Hematology and Oncology, University of Healthy Sciences, Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey.
  • Eren F; Department of Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkey.
  • Erel Ö; Department of Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara City Hospital, Ankara, Turkey.
  • Yesil S; Department of Pediatric Hematology and Oncology, University of Healthy Sciences, Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey.
  • Sahin G; Department of Pediatric Hematology and Oncology, University of Healthy Sciences, Ankara Dr. Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey.
Hemoglobin ; 46(3): 164-167, 2022 May.
Article de En | MEDLINE | ID: mdl-35543093
ABSTRACT
In children with ß-thalassemia (ß-thal) trait, tissue damage occurs with oxidative stress due to oxygen free radicals and reactive oxygen species (ROS) production. Dynamic thiol-disulfide homeostasis (DTDH) is one of the most important indicators showing the pro-oxidant/antioxidant status in the body. In this study, we aimed to examine the status of DTDH by measuring native thiol, disulfide, and total thiol levels in children with ß-thal trait. The study included 40 children with ß-thal trait and 30 healthy controls (matched by age and gender). The DTDH parameters were measured by an automated method and results were compared between the groups. The levels of native thiol, total thiol, and disulfide in children with ß-thal trait group were statistically significantly higher than the control group (p < 0.001). There was no significant difference in disulfide/native thiol, disulfide/total thiol, and native thiol/total thiol levels between the groups. In addition, there was no correlation between hemoglobin (Hb) and serum ferritin levels with the markers of DTDH in children with ß-thal trait. In our study, a significant increase was found in native thiol, total thiol, and disulfide levels in response to oxidative stress in children with ß-thal trait compared to the healthy control group. Disulfide levels of the children with ß-thal trait were higher than the control group, showing oxidative stress is high in ß-thal trait. Accordingly, it increases the native thiol and total thiol capacity as compensation.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bêta-Thalassémie / Disulfures Limites: Child / Humans Langue: En Journal: Hemoglobin Année: 2022 Type de document: Article Pays d'affiliation: Turquie

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Bêta-Thalassémie / Disulfures Limites: Child / Humans Langue: En Journal: Hemoglobin Année: 2022 Type de document: Article Pays d'affiliation: Turquie