Your browser doesn't support javascript.
loading
Lower oceanic crust formed by in situ melt crystallisation revealed by seismic layering.
Guo, Peng; Singh, Satish C; Vaddineni, Venkata A; Grevemeyer, Ingo; Saygin, Erdinc.
Affiliation
  • Guo P; Deep Earth Imaging Future Science Platform, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington 6151, Australia.
  • Singh SC; Laboratoire de Géosciences Marines, Institut de Physique du Globe de Paris, Université de Paris Cité, Paris 75005, France.
  • Vaddineni VA; Laboratoire de Géosciences Marines, Institut de Physique du Globe de Paris, Université de Paris Cité, Paris 75005, France.
  • Grevemeyer I; GEOMAR Helmholtz Centre for Ocean Research, D-24148 Kiel, Germany.
  • Saygin E; Deep Earth Imaging Future Science Platform, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington 6151, Australia.
Nat Geosci ; 15(7): 591-596, 2022 Jul.
Article de En | MEDLINE | ID: mdl-35855838
ABSTRACT
Oceanic crust forms at mid-ocean spreading centres through a combination of magmatic and tectonic processes, with the magmatic processes creating two distinct layers the upper and the lower crust. While the upper crust is known to form from lava flows and basaltic dikes based on geophysical and drilling results, the formation of the gabbroic lower crust is still debated. Here we perform a full waveform inversion of wide-angle seismic data from relatively young (7-12-million-year-old) crust formed at the slow spreading Mid-Atlantic Ridge. The seismic velocity model reveals alternating, 400-500 m thick, high and low velocity layers with ±200 m/s velocity variations, below ~2 km from the oceanic basement. The uppermost low-velocity layer is consistent with hydrothermal alteration, defining the base of extensive hydrothermal circulation near the ridge axis. The underlying layering supports that the lower crust is formed through the intrusion of melt as sills at different depths, that cool and crystallise in situ. The layering extends up to 5-15 km distance along the seismic profile, covering 300,000-800,000 years, suggesting that this form of lower crustal accretion is a stable process.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nat Geosci Année: 2022 Type de document: Article Pays d'affiliation: Australie

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Nat Geosci Année: 2022 Type de document: Article Pays d'affiliation: Australie