Your browser doesn't support javascript.
loading
The ganglioside GM1a functions as a coreceptor/attachment factor for dengue virus during infection.
Tantirimudalige, Sarala Neomi; Raghuvamsi, Palur Venkata; Sharma, Kamal Kant; Wei Bao, Jonathan Chua; Anand, Ganesh S; Wohland, Thorsten.
Affiliation
  • Tantirimudalige SN; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.
  • Raghuvamsi PV; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Bioinformatics Institute (A∗STAR), Singapore, Singapore.
  • Sharma KK; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore.
  • Wei Bao JC; Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
  • Anand GS; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
  • Wohland T; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore. Electronic address: twohland@nus.edu.sg.
J Biol Chem ; 298(11): 102570, 2022 11.
Article de En | MEDLINE | ID: mdl-36209827
ABSTRACT
Dengue virus (DENV) is a flavivirus causing an estimated 390 million infections per year around the world. Despite the immense global health and economic impact of this virus, its true receptor(s) for internalization into live cells has not yet been identified, and no successful antivirals or treatments have been isolated to this date. This study aims to improve our understanding of virus entry routes by exploring the sialic acid-based cell surface molecule GM1a and its role in DENV infection. We studied the interaction of the virus with GM1a using fluorescence correlation spectroscopy, fluorescence crosscorrelation spectroscopy, imaging fluorescence correlation spectroscopy, amide hydrogen/deuterium exchange mass spectrometry, and isothermal titration calorimetry. Additionally, we explored the effect of this interaction on infectivity and movement of the virus during infection was explored using plaque assay and fluorescence-based imaging and single particle tracking. GM1a was deemed to interact with DENV at domain I (DI) and domain II (DII) of the E protein of the protein coat at quaternary contacts of a fully assembled virus, leading to a 10-fold and 7-fold increase in infectivity for DENV1 and DENV2 in mammalian cell systems, respectively. We determined that the interaction of the virus with GM1a triggers a speeding up of virus movement on live cell surfaces, possibly resulting from a reduction in rigidity of cellular rafts during infection. Collectively, our results suggest that GM1a functions as a coreceptor/attachment factor for DENV during infection in mammalian systems.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Dengue / Virus de la dengue / Flavivirus Type d'étude: Prognostic_studies Limites: Animals / Humans Langue: En Journal: J Biol Chem Année: 2022 Type de document: Article Pays d'affiliation: Singapour

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Dengue / Virus de la dengue / Flavivirus Type d'étude: Prognostic_studies Limites: Animals / Humans Langue: En Journal: J Biol Chem Année: 2022 Type de document: Article Pays d'affiliation: Singapour
...