Your browser doesn't support javascript.
loading
Increased Ion Temperature and Neutron Yield Observed in Magnetized Indirectly Driven D_{2}-Filled Capsule Implosions on the National Ignition Facility.
Moody, J D; Pollock, B B; Sio, H; Strozzi, D J; Ho, D D-M; Walsh, C A; Kemp, G E; Lahmann, B; Kucheyev, S O; Kozioziemski, B; Carroll, E G; Kroll, J; Yanagisawa, D K; Angus, J; Bachmann, B; Bhandarkar, S D; Bude, J D; Divol, L; Ferguson, B; Fry, J; Hagler, L; Hartouni, E; Herrmann, M C; Hsing, W; Holunga, D M; Izumi, N; Javedani, J; Johnson, A; Khan, S; Kalantar, D; Kohut, T; Logan, B G; Masters, N; Nikroo, A; Orsi, N; Piston, K; Provencher, C; Rowe, A; Sater, J; Skulina, K; Stygar, W A; Tang, V; Winters, S E; Zimmerman, G; Adrian, P; Chittenden, J P; Appelbe, B; Boxall, A; Crilly, A; O'Neill, S.
Affiliation
  • Moody JD; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Pollock BB; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Sio H; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Strozzi DJ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Ho DD; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Walsh CA; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kemp GE; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Lahmann B; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kucheyev SO; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kozioziemski B; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Carroll EG; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kroll J; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Yanagisawa DK; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Angus J; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Bachmann B; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Bhandarkar SD; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Bude JD; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Divol L; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Ferguson B; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Fry J; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Hagler L; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Hartouni E; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Herrmann MC; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Hsing W; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Holunga DM; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Izumi N; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Javedani J; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Johnson A; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Khan S; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kalantar D; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kohut T; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Logan BG; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Masters N; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Nikroo A; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Orsi N; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Piston K; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Provencher C; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Rowe A; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Sater J; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Skulina K; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Stygar WA; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Tang V; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Winters SE; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Zimmerman G; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Adrian P; Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Chittenden JP; Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom.
  • Appelbe B; Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom.
  • Boxall A; Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom.
  • Crilly A; Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom.
  • O'Neill S; Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom.
Phys Rev Lett ; 129(19): 195002, 2022 Nov 04.
Article de En | MEDLINE | ID: mdl-36399755
ABSTRACT
The application of an external 26 Tesla axial magnetic field to a D_{2} gas-filled capsule indirectly driven on the National Ignition Facility is observed to increase the ion temperature by 40% and the neutron yield by a factor of 3.2 in a hot spot with areal density and temperature approaching what is required for fusion ignition [1]. The improvements are determined from energy spectral measurements of the 2.45 MeV neutrons from the D(d,n)^{3}He reaction, and the compressed central core B field is estimated to be ∼4.9 kT using the 14.1 MeV secondary neutrons from the D(T,n)^{4}He reactions. The experiments use a 30 kV pulsed-power system to deliver a ∼3 µs current pulse to a solenoidal coil wrapped around a novel high-electrical-resistivity AuTa_{4} hohlraum. Radiation magnetohydrodynamic simulations are consistent with the experiment.

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Phys Rev Lett Année: 2022 Type de document: Article Pays d'affiliation: États-Unis d'Amérique

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Langue: En Journal: Phys Rev Lett Année: 2022 Type de document: Article Pays d'affiliation: États-Unis d'Amérique
...