Your browser doesn't support javascript.
loading
Interpretable prognostic modeling of endometrial cancer.
Zagidullin, Bulat; Pasanen, Annukka; Loukovaara, Mikko; Bützow, Ralf; Tang, Jing.
Affiliation
  • Zagidullin B; Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland. bulat.zagidullin@helsinki.fi.
  • Pasanen A; Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00290, Helsinki, Finland. bulat.zagidullin@helsinki.fi.
  • Loukovaara M; Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland.
  • Bützow R; Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland.
  • Tang J; Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland.
Sci Rep ; 12(1): 21543, 2022 12 13.
Article de En | MEDLINE | ID: mdl-36513790
Endometrial carcinoma (EC) is one of the most common gynecological cancers in the world. In this work we apply Cox proportional hazards (CPH) and optimal survival tree (OST) algorithms to the retrospective prognostic modeling of disease-specific survival in 842 EC patients. We demonstrate that linear CPH models are preferred for the EC risk assessment based on clinical features alone, while interpretable, non-linear OST models are favored when patient profiles can be supplemented with additional biomarker data. We show how visually interpretable tree models can help generate and explore novel research hypotheses by studying the OST decision path structure, in which L1 cell adhesion molecule expression and estrogen receptor status are correctly indicated as important risk factors in the p53 abnormal EC subgroup. To aid further clinical adoption of advanced machine learning techniques, we stress the importance of quantifying model discrimination and calibration performance in the development of explainable clinical prediction models.
Sujet(s)

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Tumeurs de l'endomètre / Molécule d'adhérence cellulaire neurale L-1 Type d'étude: Observational_studies / Prognostic_studies / Risk_factors_studies Limites: Female / Humans Langue: En Journal: Sci Rep Année: 2022 Type de document: Article Pays d'affiliation: Finlande Pays de publication: Royaume-Uni

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Tumeurs de l'endomètre / Molécule d'adhérence cellulaire neurale L-1 Type d'étude: Observational_studies / Prognostic_studies / Risk_factors_studies Limites: Female / Humans Langue: En Journal: Sci Rep Année: 2022 Type de document: Article Pays d'affiliation: Finlande Pays de publication: Royaume-Uni