Your browser doesn't support javascript.
loading
Herpud1 modulates hypertrophic signals independently of calmodulin nuclear translocation in rat myocardium-derived H9C2 cells.
Fujioka, Riko; Yamamoto, Takeshi; Maruta, Akihiro; Nakamura, Yoshihide; Tominaga, Naoomi; Inamitsu, Masako; Oda, Tetsuro; Kobayashi, Shigeki; Yano, Masafumi.
Affiliation
  • Fujioka R; Department of Laboratory Medicine, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Yamamoto T; Department of Laboratory Medicine, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan. Electronic address: kenyama@yamaguchi-u.ac.jp.
  • Maruta A; Department of Laboratory Medicine, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Nakamura Y; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Tominaga N; Department of Laboratory Medicine, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Inamitsu M; Department of Laboratory Medicine, Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Oda T; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Kobayashi S; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Yano M; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
Biochem Biophys Res Commun ; 652: 61-67, 2023 04 16.
Article de En | MEDLINE | ID: mdl-36812708
ABSTRACT
In this study, we aimed to analyze the role of the Homocysteine-responsive endoplasmic reticulum-resident ubiquitin-like domain member 1 (Herpud1) gene in the development of cardiomyocyte hypertrophy in association with Calmodulin (CaM) nuclear translocation and cytosolic Ca2+ levels. To observe the mobilization of CaM in cardiomyocytes, we stably expressed eGFP-CaM in rat myocardium-derived H9C2 cells. These cells were then treated with Angiotensin II (Ang II), which stimulates a cardiac hypertrophic response, or dantrolene (DAN), which blocks the release of intracellular Ca2+. To observe intracellular Ca2+ in the presence of eGFP fluorescence, a Rohd-3 Ca2+ sensing dye was used. To examine the effect of suppressing Herpud1 expression, Herpud1 small interfering RNA (siRNA) were transfected into H9C2 cells. To examine whether hypertrophy induced by Ang II could be suppressed by Herpud1 overexpression, a Herpud1-expressing vector was introduced into H9C2 cells. CaM translocation was observed using eGFP fluorescence. Nuclear translocation of Nuclear factor of activated T-cells, cytoplasmic 4 (NFATc4) and nuclear export of Histone deacetylase 4 (HDAC4) were also examined. First, Ang II induced H9C2 hypertrophy with nuclear translocation of CaM and elevation of cytosolic Ca2+, which were inhibited by DAN treatment. We also found that Herpud1 overexpression suppressed Ang II-induced cellular hypertrophy without preventing nuclear translocation of CaM or elevation of cytosolic Ca2+. Additionally, Herpud1 knockdown induced hypertrophy without the nuclear translocation of CaM, which was not inhibited by DAN treatment. Finally, Herpud1 overexpression suppressed Ang II-induced NFATc4 nuclear translocation but did not suppress Ang II-induced CaM nuclear translocation or HDAC4 nuclear export. Ultimately, this study lays the groundwork for elucidating the anti-hypertrophic effects of Herpud1 and the underlying mechanism of pathological hypertrophy.
Sujet(s)
Mots clés

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Calmoduline / Myocytes cardiaques Limites: Animals Langue: En Journal: Biochem Biophys Res Commun Année: 2023 Type de document: Article Pays d'affiliation: Japon

Texte intégral: 1 Collection: 01-internacional Base de données: MEDLINE Sujet principal: Calmoduline / Myocytes cardiaques Limites: Animals Langue: En Journal: Biochem Biophys Res Commun Année: 2023 Type de document: Article Pays d'affiliation: Japon